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General Article

There is increasing concern that most current 
published research findings are false. (Ioannidis, 
2005, abstract)

It is time for researchers to avail themselves of the 
full arsenal of quantitative and qualitative statistical 
tools. . . . The current practice of focusing exclusively 
on a dichotomous reject-nonreject decision strategy 
of null hypothesis testing can actually impede 
scientific progress. . . . The focus of research should 
be on . . . what data tell us about the magnitude of 
effects, the practical significance of effects, and the 
steady accumulation of knowledge. (Kirk, 2003,  
p. 100)

We need to make substantial changes to how we usually 
carry out research. My aim here is to explain why the 
changes are necessary and to suggest how, practically, 
we should proceed. I use the new statistics as a broad 
label for what is required: The strategies and techniques 
are not themselves new, but for many researchers, adopt-
ing them would be new, as well as a great step forward.

Ioannidis (2005) and other scholars have explained 
that our published research is biased and in many cases 
not to be trusted. In response, we need to declare in 
advance our detailed research plans whenever possible, 
avoid bias in our data analysis, make our full results pub-
licly available whatever the outcome, and appreciate the 
importance of replication. I discuss these issues in the 
Research Integrity section. Then, in sections on estima-
tion, I discuss a further response to Ioannidis, which is to 
accept Kirk’s advice that we should switch from null-
hypothesis significance testing (NHST) to using effect 
sizes (ESs), estimation, and cumulation of evidence. 
Along the way, I propose 25 guidelines for improving the 
way we conduct research (see Table 1).

These are not mere tweaks to business as usual, but 
substantial changes that will require effort, as well as 
changes in attitudes and established practices. We need 
revised textbooks, software, and other resources, but 
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We need to make substantial changes to how we conduct research. First, in response to heightened concern that our 
published research literature is incomplete and untrustworthy, we need new requirements to ensure research integrity. 
These include prespecification of studies whenever possible, avoidance of selection and other inappropriate data-
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sufficient guidance is available for us to make the changes 
now, even as we develop further new-statistics practices. 
The changes will prove highly worthwhile: Our publicly 
available literature will become more trustworthy, our 
discipline more quantitative, and our research progress 
more rapid.

Research Integrity

Researchers in psychological science and other disci-
plines are currently discussing a set of severe problems 
with how we conduct, analyze, and report our research. 
Three problems are central:

•• Published research is a biased selection of all 
research;

•• data analysis and reporting are often selective and 
biased; and

•• in many research fields, studies are rarely repli-
cated, so false conclusions persist.

Ioannidis (2005) invoked all three problems as he 
famously explained “why most published research find-
ings are false.” He identified as an underlying cause our 
reliance on NHST, and in particular, the imperative to 
achieve statistical significance, which is the key to publi-
cation, career advancement, research funding, and—
especially for drug companies—profits. This imperative 
explains selective publication, motivates data selection 
and tweaking until the p value is sufficiently small, and 
deludes us into thinking that any finding that meets the 
criterion of statistical significance is true and does not 
require replication.

Simmons, Nelson, and Simonsohn (2011) made a key 
contribution in arguing that “undisclosed flexibility in 
data collection and analysis allows presenting anything 

Table 1.• Twenty-Five Guidelines for Improving Psychological Research

 1. Promote research integrity: (a) a public research literature that is complete and trustworthy and (b) ethical 
practice, including full and accurate reporting of research.

 2. Understand, discuss, and help other researchers appreciate the challenges of (a) complete reporting, (b) 
avoiding selection and bias in data analysis, and (c) replicating studies.

 3. Make sure that any study worth doing properly is reported, with full details.
 4. Make clear the status of any result—whether it deserves the confidence that arises from a fully prespecified 

study or is to some extent speculative.
 5. Carry out replication studies that can improve precision and test robustness, and studies that provide 

converging perspectives and investigate alternative explanations.
 6. Build a cumulative quantitative discipline.
 7. Whenever possible, adopt estimation thinking and avoid dichotomous thinking.
 8. Remember that obtained results are one possibility from an infinite sequence.
 9. Do not trust any p value.
10.  Whenever possible, avoid using statistical significance or p values; simply omit any mention of null-

hypothesis significance testing (NHST).
11. Move beyond NHST and use the most appropriate methods, whether estimation or other approaches.
12. Use knowledgeable judgment in context to interpret observed effect sizes (ESs).
13.  Interpret your single confidence interval (CI), but bear in mind the dance. Your 95% CI just might be one 

of the 5% that miss. As Figure 1 illustrates, it might be red!
14. Prefer 95% CIs to SE bars. Routinely report 95% CIs, and use error bars to depict them in figures.
15.  If your ES of interest is a difference, use the CI on that difference for interpretation. Only in the case of 

independence can the separate CIs inform interpretation.
16.  Consider interpreting ESs and CIs for preselected comparisons as an effective way to analyze results from 

randomized control trials and other multiway designs.
17. When appropriate, use the CIs on correlations and proportions, and their differences, for interpretation
18. Use small- or large-scale meta-analysis whenever that helps build a cumulative discipline.
19. Use a random-effects model for meta-analysis and, when possible, investigate potential moderators.
20. Publish results so as to facilitate their inclusion in future meta-analyses.
21. Make every effort to increase the informativeness of planned research.
22. If using NHST, consider and perhaps calculate power to guide planning.
23. Beware of any power statement that does not state an ES; do not use post hoc power.
24. Use a precision-for-planning analysis whenever that may be helpful.
25. Adopt an estimation perspective when considering issues of research integrity.
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as significant.” Researchers can very easily test a few 
extra participants, drop or add dependent variables, 
select which comparisons to analyze, drop some results 
as aberrant, try a few different analysis strategies, and 
then finally select which of all these things to report. 
There are sufficient degrees of freedom for statistically 
significant results to be proclaimed, whatever the original 
data. Simmons et al. emphasized the second of the three 
central problems I noted, but also discussed the first and 
third.

Important sets of articles discussing research-integrity 
issues appeared in Perspectives on Psychological Science 
in 2012 and 2013 (volume 7, issue 6; volume 8, issue 4). 
The former issue included introductions by Pashler and 
Wagenmakers (2012) and by Spellman (2012). Debate 
continues, as does work on tools and policies to address 
the problems. Here, I discuss how we should respond.

Two meanings of research integrity

First, consider the broad label research integrity. I use 
this term with two meanings. The first refers to the integ-
rity of the publicly available research literature, in the 
sense of being complete, coherent, and trustworthy. To 
ensure integrity of the literature, we must report all 
research conducted to a reasonable standard, and report-
ing must be full and accurate. The second meaning refers 
to the values and behavior of researchers, who must con-
duct, analyze, and report their research with integrity. We 
must be honest and ethical, in particular by reporting in 
full and accurate detail. (See Guideline 1 in Table 1.)

Addressing the three problems

In considering how to address our three central prob-
lems, and thus work toward research integrity, we need 
to recognize that psychological science uses a wonder-
fully broad range of approaches to research. We conduct 
experiments, and also use surveys, interviews, and other 
qualitative techniques; we study people’s reactions to 
one-off historical events, mine existing databases, ana-
lyze video recordings, run longitudinal studies for 
decades, use computer simulations to explore possibili-
ties, and analyze data from brain scans and DNA sequenc-
ing. We collaborate with disciplines that have their own 
measures, methods, and statistical tools—to the extent 
that we help develop new disciplines, with names like 
neuroeconomics and psychoinformatics. We therefore 
cannot expect that any simple set of new requirements 
will suffice; in addition, we need to understand the prob-
lems sufficiently well to devise the best responses for any 
particular research situation, and to guide development 
of new policies, textbooks, software, and other resources. 
Guideline 2 (Table 1) summarizes the three problems, to 
which I now turn.

Complete publication

Meta-analysis is a set of techniques for integrating the 
results from a number of studies on the same or similar 
issues. If a meta-analysis cannot include all relevant stud-
ies, its result is likely to be biased—the file-drawer effect. 
Therefore, any research conducted to at least a reason-
able standard must be fully reported. Such reporting may 
be in a journal, an online research repository, or some 
other enduring, publicly accessible form. Future meta-
analysts must be able to find the research easily; only 
then can meta-analysis yield results free of bias.

Achieving such complete reporting—and thus a 
research literature with integrity—is challenging, given 
pressure on journal space, editors’ desire to publish what 
is new and striking, the career imperative to achieve vis-
ibility in the most selective journals, and a concern for 
basic quality control. Solutions will include fuller use of 
online supplementary material for journal articles, new 
online journals, and open-access databases. We can 
expect top journals to continue to seek importance, nov-
elty, and high quality in the research they choose to pub-
lish, but we need to develop a range of other outlets so 
that complete and detailed reporting is possible for any 
research of at least reasonable quality, especially if it was 
fully prespecified (see the next section). Note that 
whether research meets the standard of “at least reason-
able quality” must be assessed independently of the 
results, to avoid bias in which results are reported. Full 
reporting means that all results must be reported, whether 
ESs are small or large, seemingly important or not, and 
that sufficient information must be provided so that inclu-
sion in future meta-analyses will be easy and other 
researchers will be able to replicate the study. The Journal 
Article Reporting Standards listed in the American 
Psychological Association’s (APA’s) Publication Manual 
(APA, 2010, pp. 247–250; see also Cooper, 2011) will 
help.

One key requirement is that a decision to report 
research—in the sense of making it publicly available, 
somehow—must be independent of the results. (See 
Guideline 3 in Table 1.) The best way to ensure this is to 
make a commitment to report research in advance of 
conducting it (Wagenmakers, Wetzels, Borsboom, van 
der Maas, & Kievit, 2012). Ethics review boards should 
require a commitment to report research fully within a 
stated number of months—or strong reasons why report-
ing is not warranted—as a condition for granting approval 
for proposed research.

Data selection

Psychologists have long recognized the distinction 
between planned and post hoc analyses, and the dangers 
of cherry-picking, or capitalizing on chance. Simmons  
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et al. (2011) explained how insidious and multifaceted 
the selection problem is. We need a much more compre-
hensive response than mere statistical adjustment for 
multiple post hoc tests. The best way to avoid all of the 
biases Simmons et al. identified is to specify and commit 
to full details of a study in advance. Research falls on a 
spectrum, from such fully prespecified studies, which 
provide the most convincing results and must be reported, 
to free exploration of data, results of which might be 
intriguing but must—if reported at all—be identified as 
speculation, possibly cherry-picked.

Confirmatory and exploratory are terms that are 
widely used to refer to research at the ends of this spec-
trum. Confirmatory, however, might imply that a dichot-
omous yes/no answer is expected and suggest, wrongly, 
that a fully planned study cannot simply ask a question 
(e.g., How effective is the new procedure?). I therefore 
prefer the terms prespecified and exploratory. An alterna-
tive is question answering and question formulating.

Prespecified research.• Full details of a study need to be 
specified in advance of seeing any results. The procedure, 
selection of participants, sample sizes, measures, and sta-
tistical analyses all must be described in detail and, prefer-
ably, registered independently of the researchers (e.g., at 
Open Science Framework, openscienceframework.org). 
Such preregistration might or might not be public. Any 
departures from the prespecified plan must be docu-
mented and explained, and may compromise the confi-
dence we can have in the results. After the research has 
been conducted, a full account must be reported, and this 
should include all the information needed for inclusion of 
the results in future meta-analyses.

Sample sizes, in particular, need to be declared in 
advance—unless the researcher will use a sequential or 
Bayesian statistical procedure that takes account of vari-
able N. I explain later that a precision-for-planning analy-
sis (or a power analysis if one is using NHST) may 
usefully guide the choice of N, but such an analysis is not 
mandatory: Long confidence intervals (CIs) will soon let 
us know if our experiment is weak and can give only 
imprecise estimates. The crucial point is that N must be 
specified independently of any results of the study.

Exploratory research.• Tukey (1977) advocated explora-
tion of data and provided numerous techniques and 
examples. Serendipity must be given a chance: If we do 
not explore, we might miss valuable insights that could 
suggest new research directions. We should routinely fol-
low planned analyses with exploration. Occasionally the 
results might be sufficiently interesting to warrant mention 
in a report, but then they must be clearly identified as 
speculative, quite possibly the result of cherry-picking.

Exploration has a second meaning: Running pilot 
tests to explore ideas, refine procedures and tasks, and 
guide where precious research effort is best directed is 
often one of the most rewarding stages of research. No 
matter how intriguing, however, the results of such pilot 
work rarely deserve even a brief mention in a report. 
The aim of such work is to discover how to prespecify 
in detail a study that is likely to find answers to our 
research questions, and that must be reported. Any 
researcher needs to choose the moment to switch from 
not-for-reporting pilot testing to prespecified, must-be-
reported research.

Between prespecified and exploratory.• Considering 
the diversity of our research, full prespecification may 
sometimes not be feasible, in which case we need to do 
the best we can, keeping in mind the argument of Sim-
mons et al. (2011). Any selection—in particular, any 
selection after seeing the data—is worrisome. Reporting 
of all we did, including all data-analytic steps and explo-
ration, must be complete. Acting with research integrity 
requires that we be fully informative about prespecifica-
tion, selection, and the status of any result—whether it 
deserves the confidence that arises from a fully prespeci-
fied study or is to some extent speculative. (See Guide-
line 4 in Table 1.)

Replication

A single study is rarely, if ever, definitive; additional 
related evidence is required. Such evidence may come 
from a close replication, which, with meta-analysis, 
should give more precise estimates than the original 
study. A more general replication may increase precision 
and also provide evidence of generality or robustness of 
the original finding. We need increased recognition of 
the value of both close and more general replications, 
and greater opportunities to report them.

A study that keeps some features of the original and 
varies others can give a converging perspective, ideally 
both increasing confidence in the original finding and 
starting to explore variables that influence it. Converging 
lines of evidence that are at least largely independent 
typically provide much stronger support for a finding 
than any single line of evidence. Some disciplines, includ-
ing archaeology, astronomy, and paleontology, are theory 
based and also successfully cumulative, despite often 
having little scope for close replication. Researchers in 
these fields find ingenious ways to explore converging 
perspectives, triangulate into tests of theoretical predic-
tions, and evaluate alternative explanations (Fiedler, 
Kutner, & Krueger, 2012); we can do this too. (See 
Guideline 5 in Table 1.)
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Research integrity: conclusion

For the research literature to be trustworthy, we need to 
have confidence that it is complete and that all studies of 
at least reasonable quality have been reported in full 
detail, with any departures from prespecified procedures, 
sample sizes, or analysis methods being documented in 
full. We therefore need to be confident that all research-
ers have conducted and reported their work honestly and 
completely. These are demanding but essential require-
ments, and achieving them will require new resources, 
rules, and procedures, as well as persistent, diligent 
efforts.

Further discussion is needed of research integrity, as 
well as of the most effective practical strategies for achiev-
ing the two types of research integrity I have identified. 
The discussion needs to be enriched by more explicit 
consideration of ethics in relation to research practices 
and statistical analysis (Panter & Sterba, 2011) and, more 
broadly, by consideration of the values that inform the 
choices researchers need to make at every stage of plan-
ning, conducting, analyzing, interpreting, and reporting 
research (Douglas, 2007).

As I mentioned, Ioannidis (2005) identified reliance on 
NHST as a major cause of many of the problems with 
research integrity, so shifting from NHST would be a big 
help. There are additional strong reasons to make this 
change: For more than half a century, distinguished schol-
ars have published damning critiques of NHST and have 
described the damage it does. They have advocated a shift 
from NHST to better techniques, with many nominating 
estimation—meaning ESs, CIs, and meta-analysis—as their 
approach of choice. Most of the remainder of this article is 
concerned with explaining why such a shift is so impor-
tant and how we can achieve it in practice. Our reward 
will be not only improved research integrity, but also a 
more quantitative, successful discipline.

Estimation: Why

Suppose you read in the news that “support for 
Proposition X is 53%, in a poll with an error margin of 
2%.” Most readers immediately understand that the 53% 
came from a sample and, assuming that the poll was 
competent, conclude that 53% is a fair estimate of sup-
port in the population. The 2% suggests the largest likely 
error. Reporting a result in such a way, or as 53 ±•2%, or 
as 53% with a 95% CI of [51, 55], is natural and informa-
tive. It is more informative than stating that support is 
“statistically significantly greater than 50%, p < .01.” The 
53% is our point estimate, and the CI our interval esti-
mate, whose length indicates precision of estimation. 
Such a focus on estimation is the natural choice in many 
branches of science and accords well with a core aim of 

psychological science, which is to build a cumulative 
quantitative discipline. (See Guideline 6 in Table 1.)

Rodgers (2010) argued that psychological science is, 
increasingly, developing quantitative models. That is 
excellent news, and supports this core aim. I am advocat-
ing estimation as usually the most informative approach 
and also urging avoidance of NHST whenever possible. I 
summarize a few reasons why we should make the 
change and then discuss how to use estimation and 
meta-analysis in practice.

In a book on the new statistics (Cumming, 2012), I 
discussed most of the issues mentioned in the remainder 
of this article. I do not refer to that book in every section 
below, but it extends the discussion here and includes 
many relevant examples. It is accompanied by Exploratory 
Software for Confidence Intervals, or ESCI (“ESS-key”), 
which runs under Microsoft Excel and can be freely 
downloaded from the Internet, at www.thenewstatistics 
.com (Cumming, 2013). ESCI includes simulations illus-
trating many new-statistics ideas, as well as tools for cal-
culating and picturing CIs and meta-analysis.

NHST is fatally flawed

Kline (2004, chap. 3; also available at tiny.cc/klinechap3) 
provided an excellent summary of the deep flaws in 
NHST and how we use it. He identified mistaken beliefs, 
damaging practices, and ways in which NHST retards 
research progress. Anderson (1997) has made a set of 
pithy statements about the problems of NHST available 
on the Internet. Very few defenses of NHST have been 
attempted; it simply persists, and is deeply embedded in 
our thinking. Kirk (2003), quoted at the outset of this 
article, identified one central problem: NHST prompts us 
to see the world as black or white, and to formulate our 
research aims and make our conclusions in dichotomous 
terms—an effect is statistically significant or it is not; it 
exists or it does not. Moving from such dichotomous 
thinking to estimation thinking is a major challenge, but 
an essential step. (See Guideline 7 in Table 1.)

Why is NHST so deeply entrenched? I suspect the 
seductive appeal—the apparent but illusory certainty—of 
declaring an effect “statistically significant” is a large part 
of the problem. Dawkins (2004) identified “the tyranny of 
the discontinuous mind” (p. 252) as an inherent human 
tendency to seek the reassurance of an either-or classifi-
cation, and van Deemter (2010) labeled as “false clarity” 
(p. 6) our preference for black or white over nuance. In 
contrast to a seemingly definitive dichotomous decision, 
a CI is often discouragingly long, although its quantifica-
tion of uncertainty is accurate, and a message we need to 
come to terms with.

Despite warnings in statistics textbooks, the word sig-
nificant is part of the seductive appeal: A “statistically 

www.thenewstatistics.com
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significant” effect in the results section becomes “signifi-
cant” in the discussion or abstract, and “significant” shouts 
“important.” Kline (2004) recommended that if we use 
NHST, we should refer to “a statistical difference,” omit-
ting “significant.” That is a good policy; the safest plan is 
never to use the word significant. The best policy is, 
whenever possible, not to use NHST at all.

Replication, p values, and CIs

I describe here a major problem of NHST that is too little 
recognized. If p reveals truth, and we replicate the exper-
iment—doing everything the same except with a new 
random sample—then replication p, the p value in the 

second experiment, should presumably reveal the same 
truth. We can simulate such idealized replication to inves-
tigate the variability of p. Figure 1 depicts the simulated 
results of 25 replications of an experiment with two inde-
pendent groups, each group having an n of 32. The pop-
ulation ES is 10 units of the dependent variable, or a 
Cohen’s δ of 0.50, which is conventionally considered a 
medium effect. Statistical power to find a medium-sized 
effect is .50, so the experiment is typical of what is pub-
lished in many fields in psychology (Cohen, 1962; 
Maxwell, 2004).

The 95% CIs bounce around as we expect; they form 
the dance of the CIs. Possibly surprising is the enormous 
variation in the p value—from less than .001 to .75. It 
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Fig. 1.• Simulated results of 25 replications of an experiment (numbered at the left). Each experiment comprises 
two independent samples with an n of 32; the samples are from normally distributed populations with σ = 20 and 
means that differ by µ = 10. For each experiment, the difference between the sample means (circle) and the 95% 
confidence interval (CI) for this difference are displayed. The p values in the list at the left are two-tailed, for a null 
hypothesis of zero difference, µ0 = 0, with σ assumed to be not known (*.01 < p < .05, **.001 < p < .01, ***p < .001; a 
question mark indicates .05 < p < .10). The population effect size is 10, or Cohen’s δ = 0.5, which is conventionally 
considered a medium-sized effect. Mean differences whose CI does not capture µ are shown in red. The curve is 
the sampling distribution of the difference between the sample means; the heavy line spans 95% of the area under 
the curve.
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seems that p can take almost any value! This dance of the 
p values is astonishingly wide! You can see more about 
the dance at tiny.cc/dancepvals and download ESCI 
(Cumming, 2013) to run the simulation. Vary the popula-
tion ES and n, and you will find that even when power is 
high—in fact, in virtually every situation—p varies dra-
matically (Cumming, 2008).

CIs and p values are based on the same statistical the-
ory, and with practice, it is easy to translate from a CI to 
the p value by noting where the interval falls in relation to 
the null value, µ0 = 0. It is also possible to translate in the 
other direction and use knowledge of the sample ES (the 
difference between the group means) and the p value to 
picture the CI; this may be the best way to interpret a p 
value. These translations do not mean that p and the CI are 
equally useful: The CI is much more informative because 
it indicates the extent of uncertainty, in addition to provid-
ing the best point estimate of what we want to know.

Running a single experiment amounts to choosing 
randomly from an infinite sequence of replications like 
those in Figure 1. A single CI is informative about the 
infinite sequence, because its length indicates approxi-
mately the extent of bouncing around in the dance. In 
stark contrast, a single p value gives virtually no informa-
tion about the infinite sequence of p values. (See 
Guideline 8 in Table 1.)

What does an experiment tell us about the likely result 
if we repeat that experiment? For each experiment in 
Figure 1, note whether the CI includes the mean of the 
next experiment. In 20 of the 24 cases, the 95% CI includes 
the mean next above it in the figure. That is 83.3% of the 
experiments, which happens to be very close to the long-
run average of 83.4% (Cumming & Maillardet, 2006; 
Cumming, Williams, & Fidler, 2004). So a 95% CI is an 83% 
prediction interval for the ES estimate of a replication 
experiment. In other words, a CI is usefully informative 
about what is likely to happen next time.

Now consider NHST. A replication has traditionally 
been regarded as “successful” if its statistical-significance 
status matches that of the original experiment—both ps < 
.05 or both ps ≥ .05. In Figure 1, just 9 of the 24 (38%) 
replications match the significance status of the experi-
ment immediately below, and are thus successful by this 
criterion. With power of .50, as here, in the long run we 
can expect 50% to be successful. Even with power of .80, 
only 68% of replications will be successful. This example 
illustrates that NHST gives only poor information about 
the likely result of a replication.

Considering exact p values gives an even more dra-
matic contrast with CIs. If an experiment gives a two-
tailed p of .05, an 80% prediction interval for one-tailed p 
in a replication study is (.00008, .44), which means there 
is an 80% chance that p will fall in that interval, a 10% 
chance that p will be less than .00008, and a 10% chance 
that p will be greater than .44. Perhaps remarkably, that 

prediction interval for p is independent of N, because the 
calculation of p takes account of sample size. Whatever 
the N, a p value gives only extremely vague information 
about replication (Cumming, 2008). Any calculated value 
of p could easily have been very different had we merely 
taken a different sample, and therefore we should not 
trust any p value. (See Guideline 9 in Table 1.)

Evidence that CIs are better than NHST

My colleagues and I (Coulson, Healey, Fidler, & Cumming, 
2010) presented evidence that, at least in some common 
situations, researchers who see results presented as CIs 
are much more likely to make a correct interpretation if 
they think in terms of estimation than if they consider 
NHST. This finding suggests that it is best to interpret CIs 
as intervals, without invoking NHST, and, further, that it 
is better to report CIs and make no mention of NHST or 
p values. Fidler and Loftus (2009) reported further evi-
dence that CIs are likely to prompt better interpretation 
than is a report based on NHST. Such evidence comes 
from the research field of statistical cognition, which 
investigates how researchers and other individuals under-
stand, or misunderstand, various statistical concepts, and 
how results can best be analyzed and presented for cor-
rect comprehension by readers. If our statistical practices 
are to be evidence based, we must be guided by such 
empirical results. In this case, the evidence suggests that 
we should use estimation and avoid NHST.

Defenses of NHST

Schmidt and Hunter (1997) noted eight prominent 
attempted justifications of NHST. These justifications 
claimed, for example, that significance testing is needed

•• to identify which results are real and which are 
due to chance,

•• to determine whether or not an effect exists,
•• to ensure that data analysis is objective, and
•• to allow us to make clear decisions, as in practice 

we need to do.

Schmidt and Hunter made a detailed response to each 
statement. They concluded that each is false, that we 
should cease to use NHST, and that estimation provides 
a much better way to analyze results, draw conclusions, 
and make decisions—even when the researcher may pri-
marily care only about whether some effect is nonzero.

Shifting from NHST: additional 
considerations

I am advocating shifting as much as possible from NHST 
to estimation. This is no mere fad or personal preference: 



14 Cumming

The damage done by NHST is substantial and well docu-
mented (e.g., Fidler, 2005, chap. 3); the improved research 
progress offered by estimation is also substantial, and a 
key step toward achieving the core aim expressed in 
Guideline 6. Identification of NHST as a main cause of 
problems with research integrity (Ioannidis, 2005) rein-
forces the need to shift, and the urgency of doing so.

I recognize how difficult it may be to move from the 
seductive but illusory certainty of “statistically significant,” 
but we need to abandon that security blanket, overcome 
that addiction. I suggest that, once freed from the require-
ment to report p values, we may appreciate how simple, 
natural, and informative it is to report that “support for 
Proposition X is 53%, with a 95% CI of [51, 55],” and then 
interpret those point and interval estimates in practical 
terms. The introductory statistics course need no longer 
turn promising students away from our discipline, having 
terminally discouraged them with the weird arbitrariness 
of NHST. Finally, APA’s Publication Manual (APA, 2010, 
p. 34) makes an unequivocal statement that interpreta-
tion of results should whenever possible be based on ES 
estimates and CIs. (That and other statistical recommen-
dations of the 2010 edition of the manual were discussed 
by Cumming, Fidler, Kalinowski, & Lai, 2012.) It is time to 
move on from NHST. Whenever possible, avoid using 
statistical significance or p values; simply omit any men-
tion of NHST. (See Guideline 10 in Table 1.)

Estimation: How

In this section, I start with an eight-step new-statistics 
strategy, discuss some preliminaries, and then consider 
ESs, CIs, the interpretation of both of these, and meta- 
analysis.

An eight-step new-statistics strategy 
for research with integrity

The following eight steps highlight aspects of the research 
process that are especially relevant for achieving the 
changes discussed in this article.

1. Formulate research questions in estimation 
terms. To use estimation thinking, ask “How large 
is the effect?” or “To what extent . . . ?” Avoid 
dichotomous expressions such as “test the hypoth-
esis of no difference” or “Is this treatment better?”

2. Identify the ESs that will best answer the 
research questions. If, for example, the ques-
tion asks about the difference between two means, 
then that difference is the required ES, as illus-
trated in Figure 1. If the question asks how well a 
model describes some data, then the ES is a mea-
sure of goodness of fit.

3. Declare full details of the intended proce-
dure and data analysis. Prespecify as many 
aspects of your intended study as you can, includ-
ing sample sizes. A fully prespecified study is best.

4. After running the study, calculate point esti-
mates and CIs for the chosen ESs. For 
Experiment 1 in Figure 1, the estimated difference 
between the means is 16.9, 95% CI [6.1, 27.7]. 
(That is the APA format. From here on, I omit “95% 
CI,” so square brackets signal a 95% CI.)

5. Make one or more figures, including CIs. As 
in Figure 1, use error bars to depict 95% CIs.

6. Interpret the ESs and CIs. In writing up results, 
discuss the ES estimates, which are the main 
research outcome, and the CI lengths, which indi-
cate precision. Consider theoretical and practical 
implications, in accord with the research aims.

7. Use meta-analytic thinking throughout. 
Think of any single study as building on past stud-
ies and leading to future studies. Present results to 
facilitate their inclusion in future meta-analyses. 
Use meta-analysis to integrate findings whenever 
appropriate.

8. Report. Make a full description of the research, 
preferably including the raw data, available to 
other researchers. This may be done via journal 
publication or posting to some enduring publicly 
available online repository (e.g., figshare, figshare.
com; Open Science Framework, openscience 
framework.org; Psych FileDrawer, psychfile 
drawer.org). Be fully transparent about every step, 
including data analysis—and especially about any 
exploration or selection, which requires the cor-
responding results to be identified as speculative.

All these steps differ from past common practice. Step 
1 may require a big change in thinking, but may be the 
key to adopting the new statistics, because asking “how 
much” naturally prompts a quantitative answer—an ES. 
Step 6 calls for informed judgment, rather than a mechan-
ical statement of statistical significance. Steps 3 and 8 are 
necessary for research integrity.

The new statistics in context

The eight-step strategy is, of course, far from a complete 
recipe for good research. There is no mention, for exam-
ple, of selecting a good design or finding measures with 
good reliability and validity. Consider, in addition, the 
excellent advice of the APA Task Force on Statistical 
Inference (Wilkinson & Task Force on Statistical Inference, 
1999; also available at tiny.cc/tfsi1999), including the 
advice to keep things simple, when appropriate: “Simpler 
classical approaches [to designs and analytic methods] 
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often can provide elegant and sufficient answers to 
important questions” (p. 598, italics in the original). The 
task force also advised researchers, “As soon as you have 
collected your data, . . . look at your data” (p. 597, italics 
in the original).

I see the first essential stage of statistical reform as 
being a shift from NHST. I focus on estimation as an 
achievable step forward, but other approaches also 
deserve wider use. Never again will any technique—CIs 
or anything else—be as widely used as p values have 
been. (See Guideline 11 in Table 1.)

I mention next four examples of further valuable 
approaches:

•• Data exploration: John Tukey’s (1977) book 
Exploratory Data Analysis legitimated data explo-
ration and also provides a wealth of practical guid-
ance. There is great scope to bring Tukey’s 
approach into the era of powerful interactive soft-
ware for data mining and representation.

•• Bayesian methods: These are becoming commonly 
used in some disciplines, for example, ecology 
(McCarthy, 2007). Bayesian approaches to estima-
tion based on credible intervals, to model assess-
ment and selection, and to meta-analysis are highly 
valuable (Kruschke, 2010). I would be wary, how-
ever, of Bayesian hypothesis testing, if it does not 
escape the limitations of dichotomous thinking.

•• Robust methods: The common assumption of nor-
mally distributed populations is often unrealistic, 
and conventional methods are not as robust to 
typical departures from normality as is often 
assumed. Robust methods largely sidestep such 
problems and deserve to be more widely used 
(Erceg-Hurn & Mirosevich, 2008; Wilcox, 2011).

•• Resampling and bootstrapping methods: These are 
attractive in many situations. They often require 
few assumptions and can be used to estimate CIs 
(Kirby & Gerlanc, 2013).

Note that considering options for data analysis does 
not license choosing among them after running the 
experiment: Selecting the analysis strategy was one of the 
degrees of freedom described by Simmons et al. (2011); 
that strategy should be prespecified along with other 
details of the intended study.

ESs

An ES is simply an amount of anything of interest 
(Cumming & Fidler, 2009). Means, differences between 
means, frequencies, correlations, and many other familiar 
quantities are ESs. A p value, however, is not an ES. A 
sample ES, calculated from data, is typically our point 

estimate of the population ES. ESs can be reported in 
original units (e.g., milliseconds or score units) or in 
some standardized or units-free measure (e.g., Cohen’s d, 
β, η

p
2, or a proportion of variance). ESs in original units 

may often be more readily interpreted, but a standard-
ized ES can assist comparison over studies and is usually 
necessary for meta-analysis. Reporting both kinds of ESs 
is often useful.

Cohen’s d.• Cohen’s d deserves discussion because it is 
widely useful but has pitfalls. It is a standardized ES that 
is calculated by taking an original-units ES, usually the 
difference between two means, and expressing this as a 
number of standard deviations. The original-units ES is 
divided by a standardizer that we choose as a suitable 
unit of measurement:

                        
d M M s= ( )E C– / ,  (1)

where ME and MC are experimental (E) and control (C) 
means, and s is the standardizer. Cohen’s d is thus a 
kind of z score. First we choose a population standard 
deviation that makes sense as the unit for d, and then 
we choose our best estimate of that standard deviation 
to use as s in the denominator of d. For two indepen-
dent groups, if we assume homogeneity of variance, the 
pooled standard deviation within groups, sp, is our stan-
dardizer, just as we use for the independent-groups t 
test. If we suspect the treatment notably affects variabil-
ity, we might prefer the control population’s standard 
deviation, estimated by sC (the control group’s standard 
deviation), as the standardizer. If we have several com-
parable control groups, pooling over these may give a 
more precise estimate to use as the standardizer. These 
choices obviously lead to different values for d, so 
whenever we see a value of d, we need to know how it 
was calculated before we can interpret it. When report-
ing values of d, make sure to describe how they were 
calculated.

Now consider a repeated measure design, in which 
each participant experiences both E and C treatments. 
We would probably regard the C population as the refer-
ence and choose its standard deviation, estimated by sC, 
as the standardizer. However, the CI on the difference in 
this repeated measure design (and also the paired t test) 
is calculated using sdiff, the standard deviation of the 
paired differences, rather than sC. As noted earlier, with 
two independent groups, sp serves as the standardizer for 
d and also for the independent-groups t test. By contrast, 
the repeated measure design emphasizes that the stan-
dard deviation we choose as the standardizer may be 
quite different from the standard deviation we use for 
inference, whether based on a CI or a t test.
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Equation 1 emphasizes that d is the ratio of two quan-
tities, each estimated from data (Cumming & Finch, 2001). 
If we replicate the experiment, both numerator and 
denominator—the original-units ES and the standard-
izer—will be different. Cohen’s d is thus measured on a 
“rubber ruler,” whose unit, the standardizer, stretches in 
or out if we repeat the experiment. We therefore must be 
very careful when interpreting d, especially when we 
compare d values given by different conditions or experi-
ments. Do the original-units ESs differ, does the standard-
izer differ, or do both differ? This difficulty has led some 
scholars, especially in medicine (Greenland, Schlesselman, 
& Criqui, 1986), to argue that standardized ES measures 
should never be used. In psychology, however, we have 
little option but to use a standardized ES when we wish 
to meta-analyze results from studies that used different 
original-units measures—different measures of anxiety, 
for example.

I have three final remarks about d. Because d is the 
ratio of two estimated quantities, its distribution is com-
plex, and it is not straightforward to calculate CIs for d. 
ESCI can provide CIs on d in a number of basic situa-
tions, or you can use good approximations (Cumming & 
Fidler, 2009). (See Grissom & Kim, 2012, chap. 3, for 
more about CIs for d.) Second, symbols and terms refer-
ring to the standardized difference between means, cal-
culated in various ways, are used inconsistently in the 
literature. “Hedges’s g,” for example, is used with at least 
two different meanings. I recommend following common 
practice and using Cohen’s d as the generic term, but be 
sure to explain how d was calculated. Third, the simple 
calculations of d I have discussed give values that are 
biased estimates of δ, the population ES; d is somewhat 
too large, especially when N is small. A simple adjust-
ment (Grissom & Kim, 2012, p. 70, or use ESCI) is required 
to give dunb, the unbiased version of Cohen’s d; we should 
usually prefer dunb. (For more on Cohen’s d, see Cumming, 
2012, chap. 11.)

Interpretation of ESs.• Interpretation of ESs requires 
informed judgment in context. We need to trust our 
expertise and report our assessment of the size, impor-
tance, and theoretical or practical value of an ES, taking 
full account of the research situation. Cohen (1988) sug-
gested 0.2, 0.5, and 0.8 as small, medium, and large val-
ues of d, but emphasized that making a judgment in 
context should be preferred to these fallback bench-
marks. Interpretation should include consideration, when 
appropriate, of the manipulation or treatment, the partici-
pants, and the research aims. When interpreting an ES, 
give reasons.

Published reference points can sometimes guide inter-
pretation: For the Beck Depression Inventory-II (Beck, 
Steer, Ball, & Ranieri, 1996), for example, scores of 0 

through 13, 14 through 19, 20 through 28, and 29 through 
63 are labeled as indicating, respectively, minimal, mild, 
moderate, and severe levels of depression. In pain 
research, a change in rating of 10 mm on the 100-mm 
visual analog scale is often regarded as the smallest 
change of clinical importance—although no doubt differ-
ent interpretations may be appropriate in different situa-
tions. A neuropsychology colleague tells me that, as a 
rough guideline, he uses a decrease of 15% in a client’s 
memory score as the smallest change possibly of clinical 
interest. Comparison with ESs found in past research can 
be useful. I hope increasing attention to ES interpretation 
will prompt emergence of additional formal or informal 
conventions to help guide interpretation of various sizes 
of effect. However, no guideline will be universally appli-
cable, and researchers must take responsibility for their 
ES interpretations. (See Guideline 12 in Table 1.)

Interpretation of CIs

CIs indicate the precision of our ES estimates, so interpre-
tation of ESs must be accompanied by interpretation of 
CIs. I offer six approaches, one or more of which may be 
useful in any particular case. The discussion here refers 
to a 95% CI for a population mean, µ, but generally 
applies to any CI. (For an introduction to CIs and their 
use, see Cumming & Finch, 2005; also available at tiny 
.cc/inferencebyeye.)

One from an infinite sequence.• The CI calculated 
from our data is one from the dance, as Figure 1 illus-
trates. In the long run, 95% of CIs will include µ, and an 
unidentified 5% will miss. Most likely our CI includes µ, 
but it might not—it might be red, as in Figure 1.

Thinking of our CI as coming from an infinite sequence 
is the correct interpretation, but in practice we need to 
interpret what we have—our single interval. That is rea-
sonable, providing our CI is typical of the dance. It usu-
ally is, with two exceptions. First, in Figure 1, the CIs vary 
somewhat in length, because each is based on the sam-
ple’s standard deviation. Each CI length is an estimate of 
the length of the heavy line at the bottom of the figure, 
which indicates an interval including 95% of the area 
under the curve, which would be the CI length if we 
knew the population standard deviation. With two groups 
of n = 32, CI length varies noticeably from experiment to 
experiment. A smaller n gives greater variation, and if n 
is less than, say, 10, the variation is so large that the 
length of a single CI may be a very poor estimate of pre-
cision. A CI is of little practical use when samples are 
very small.

A second exception occurs when our CI is not chosen 
randomly. If we run several experiments but report only 
the largest ES, or the shortest CI, that result is not typical 
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of the dance, and the CI is practically uninterpretable. 
Simmons et al. (2011) explained how such selection is 
problematic. Barring a tiny sample or data selection, it is 
generally reasonable to interpret our single CI, and the 
following five approaches all do that. We should, how-
ever, always remember the dance: Our CI just might be 
red! (See Guideline 13 in Table 1.)

Focus on our interval.• Our CI defines a set of plausi-
ble, or likely, values for µ, and values outside the interval 
are relatively implausible. We can be 95% confident that 
our interval includes µ and can think of the lower and 
upper limits as likely lower and upper bounds for µ. 
Interpret the point estimate—the sample mean (M) at the 
center of the interval—and also the two limits of the CI. 
If an interval is sufficiently short and close to zero that 
you regard every value in the interval as negligible, you 
can conclude that the true value of µ is, for practical pur-
poses, zero or very close to zero. That is the best way to 
think about what, in the NHST world, is acceptance of a 
null hypothesis.

Prediction.• As I discussed earlier, our CI is an 83% pre-
diction interval for the ES that would be given by a repli-
cation experiment (Cumming & Maillardet, 2006). Our CI 
defines a range within which the mean of a repeat exper-
iment most likely will fall (on average, a 5-in-6 chance).

Precision.• The margin of error (MOE—pronounced 
“mow-ee”) is the length of one arm of a CI and indicates 
precision. Our estimation error is the difference between 
the sample and population means (M – µ). We can be 
95% confident that this error is no greater than the MOE 
in absolute value. A large MOE indicates low precision 
and an uninformative experiment; a small MOE is gold. A 
major purpose of meta-analysis is to integrate evidence 
to increase precision. Later, I discuss another use of pre-
cision—to assist research planning.

The cat’s-eye picture of a CI.• The curve in Figure 1 
shows the sampling distribution of M, the difference 
between the two sample means: As the dance also illus-
trates, most values of M fall close to µ, and progressively 
fewer fall at greater distances. The curve is also the distri-
bution of estimation errors: Errors are most likely close to 
zero, and larger errors are progressively less likely, which 
implies that our interval has most likely fallen so that M 
is close to µ. Therefore, values close to our M are the best 
bet for µ, and values closer to the limits of our CI are suc-
cessively less good bets.

The curve, if centered around M rather than µ, indi-
cates the relative plausibility, or likelihood, of values 
being the true value of µ. The center graphics of Figure 2 

show the conventional error bars for a 95% CI and the 
cat’s-eye picture of that CI, bounded by the likelihood 
curve centered around M and its mirror image. The black 
area of the cat’s-eye picture spans the CI and comprises 
95% of the area between the curves. The horizontal width 
of the cat’s-eye picture indicates the relative likelihood 
that any value of the dependent variable is µ, the param-
eter we are estimating. A value close to the center of the 
CI is about 7 times as likely to be µ as is a value near a 
limit of the 95% CI. Thus, the black area is the likelihood 
profile, or beautiful “shape” of the 95% CI (Cumming, 
2007; Cumming & Fidler, 2009). This fifth approach to 
interpreting a CI is a nuanced extension to the second 
approach: Our CI defines an interval of plausible values 
for µ, but plausibility varies smoothly across and beyond 
the interval, as the cat’s-eye picture indicates.

Link with NHST.• If our CI falls so that a null value µ0 
lies outside the interval, the two-tailed p is less than .05, 
and the null hypothesis can be rejected. If µ0 is inside the 
interval, then p is greater than .05. Figure 1 illustrates that 
the closer the sample mean is to µ0, the larger is p (Cum-
ming, 2007). This is my least preferred way to interpret a 
CI: I earlier cited evidence that CIs can prompt better 
interpretation if NHST is avoided. Also, the smooth varia-
tion of the cat’s-eye picture near any CI limit suggests that 
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Fig. 2.• Conventional error bars and cat’s-eye pictures for a 99% con-
fidence interval (CI; left), a 95% CI (center), and SE bars (right). The 
cat’s-eye pictures are bounded by the curve shown in Figure 1 and 
its mirror image, which are centered on the sample mean in order to 
indicate relative likelihood. The black areas match the extent of the 
error bars and indicate 99%, 95%, and about 68% of the area between 
the curves, respectively. The horizontal width of each cat’s-eye picture 
represents the relative likelihood for µ across the full range of values of 
the dependent variable. Thus, these black areas picture the likelihood 
profiles, or “shapes,” of the intervals.



18 Cumming

we should not lapse back into dichotomous thinking by 
attaching any particular importance to whether a value of 
interest lies just inside or just outside our CI.

Error bars: prefer 95% CIs

It is extremely unfortunate that the familiar error-bar 
graphic can mean so many different things. Figure 2 uses 
it to depict a 99% CI and SE bars (i.e., mean ±1 SE), as 
well as a 95% CI; the same graphic may also represent 
standard deviations, CIs with other levels of confidence, 
or various other quantities. Every figure with error bars 
must state clearly what the bars represent. (An introduc-
tory discussion of error bars was provided by Cumming, 
Fidler, & Vaux, 2007.)

Numerous articles in Psychological Science have 
included figures with SE bars, although these have rarely 
been used to guide interpretation. The best way to think 
of SE bars on a mean is usually to double the whole 
length—so the bars extend 2 SE above and 2 SE below 
the mean—and interpret them as being, approximately, 
the 95% CI, as Figure 2 illustrates (Cumming & Finch, 
2005). The right-hand cat’s-eye picture in Figure 2 illus-
trates that relative likelihood changes little across SE bars, 
which span only about two thirds of the area between 
the two curves. SE bars are usually approximately equiva-
lent to 68% CIs and are 52% prediction intervals (Cumming 
& Maillardet, 2006): There is about a coin-toss chance 
that a repeat of the experiment will give a sample ES 
within the original SE bars.

It may be discouraging to display 95% CIs rather than 
the much shorter SE bars, but there are strong reasons for 
preferring CIs. First, they are designed for inference. 
Second, for means, although there is usually a simple 
relation between SE bars and the 95% CI, that relation 
breaks down if N is small; for other measures, including 
correlations, there is no simple relation between the CI 
and any standard error. Therefore, SE bars cannot be 
relied on to provide inferential information, which is 
what we want. Since the 1980s, medical researchers have 
routinely reported CIs, not SE bars. We should do the 
same. (See Guideline 14 in Table 1.)

Figure 2 shows that 99% CIs simply extend further 
than 95% CIs, to span 99% rather than 95% of the area 
between the two likelihood curves. They are about one 
third longer than 95% CIs. Further approximate bench-
marks are that 90% CIs are about five sixths as long as 
95% CIs, and 50% CIs are about one third as long. Noting 
benchmarks like these (Cumming, 2007) allows you to 
convert easily among CIs with various levels of confi-
dence. In matters of life and death, it might seem better 
to use 99% CIs, or even 99.9% CIs (about two thirds lon-
ger than 95% CIs), but I suggest that it is virtually always 
best to use 95% CIs. We should build our intuitions 

(bearing in mind the cat’s-eye picture) for 95% CIs—the 
most common CIs—and use benchmarks if necessary to 
interpret other CIs.

Examples of ES and CI interpretation

As I have discussed, interpretation of ESs and CIs relies 
on knowledgeable judgment in context, and should be 
nuanced and meaningful. This approach will lack the 
seductive but illusory certainty of a p-value cutoff. If that 
seems a step too far, recall the dance of the p values and 
reflect on how unreliable p is, and how inappropriate it 
is as an arbiter of research quality or publishability. We 
happily rely on informed judgment for evaluation of 
research questions, research designs, and numerous 
aspects of how research is conducted and analyzed; we 
need to extend that reliance to assessment of results and 
interpretations. With full reporting, informed debate 
about interpretation is possible and appropriate, just as it 
is about any other aspect of research. I offer five brief 
examples of reporting and discussing ESs and CIs.

Two independent groups.• Figure 3 shows one way 
that ESCI can display results from an experiment with 
two independent groups. If our research question asks 
about the difference between means, Steps 2 and 4 of the 
eight-step strategy tell us to focus on that difference and 
its CI. Figure 1 does this by displaying, for each experi-
ment, the difference between the means and its CI. In 
Figure 3, the difference and its CI are shown on a floating 
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Fig. 3.• Means and 95% confidence intervals (CIs) for a fictitious experi-
ment with two independent groups (n = 40 for each group). The differ-
ence between the group means, with its 95% CI, is shown on a floating 
difference axis at the right.
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difference axis, but the group means and CIs are also 
displayed. The common practice of displaying group 
means gives a general picture, but interpretation of any 
difference should be informed by the appropriate CI—
the CI on that difference. In Figure 3 the difference is 54.0 
[7.2, 100.8], which suggests that our experiment has low 
precision and is perhaps of little value—although it might 
still make a useful contribution to a meta-analysis. That is 
a much better approach than declaring the result “statisti-
cally significant, p = .024.”

For independent groups, the CI on the difference is 
usually, as in Figure 3, about 1.4 times the average of the 
lengths of the CIs on the two means. The two separate 
CIs can be used to assess the difference. Finch and I 
(Cumming & Finch, 2005; see also Cumming, 2009) 
described rules of eye for doing this. If the two groups’ 
CIs just touch or do not overlap, there is reasonable evi-
dence of a population difference, and, approximately, p 
is less than .01. If the two groups’ CIs overlap by only a 
moderate amount (no more than half the average MOE, 
as approximately in Fig. 3), there is some evidence of a 
difference, and, approximately, p is less than .05. I have 
stated here the approximate p values, but there is no 
need to invoke p values: Simply interpret the two inter-
vals, but note well that the means must be independent 
for these rules of eye to be valid.

By contrast, in a paired or repeated measure design, 
the CI on the difference is typically shorter than the CIs 
on the separate measures, because the two measures 

(e.g., pretest and posttest) are usually positively corre-
lated. The shortness of that CI reflects the sensitivity of 
the design: The higher the correlation, the more sensitive 
the design and the shorter the CI. With a repeated mea-
sure, overlap of the separate CIs is totally irrelevant, no 
rule of eye is possible, and we must have the CI on the 
difference if we are to interpret the difference. (See 
Guideline 15 in Table 1.)

Randomized control trials and other complex 
designs.• Randomized control trials (RCTs) provide, 
arguably, the highest-quality evidence to support evi-
dence-based practice, for example, in clinical psychol-
ogy. The focus needs to be on ESs, precision, and clinical 
importance of effects, although this has often not been 
the case in published reports of RCTs (Faulkner, Fidler, & 
Cumming, 2008). Figure 4 is a simple ESCI display of 
means and 95% CIs for an RCT in which independent 
treatment and control groups each provided anxiety 
scores at four time points. Any mean and CI could be 
interpreted with reference to the clinical threshold for 
anxiety marked in the figure. (Marking such reference 
points in figures may be a useful strategy to assist ES 
interpretation.)

A simple way to analyze these results is to focus on a 
small number of comparisons, which should be specified 
in advance. Any between-groups comparison, for exam-
ple, treatment versus control group at posttest, can be 
assessed by noting the ES, which in this case is about 
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−35, and considering the two CIs. You could use the 1.4 
rule from the previous section to estimate that the CI on 
the ES (the difference) has a MOE of about 20, and then 
make a clinical judgment about this anxiety reduction of 
−35 [−55, −15].

The situation is different, however, for a within-group 
comparison. For example, if we want to compare 
Follow-Up 1 and Follow-Up 2 for the treatment group, 
we can note the ES, which is about 10, but cannot make 
any judgment about the precision of that estimated 
change, because the comparison involves a repeated 
measure. The two separate CIs are irrelevant. To assess 
any repeated measure comparison, we need to have the 
CI on the change in question reported explicitly, either 
numerically in the text or in a figure that displays within-
group changes. An attractive alternative is to use the 
techniques of Masson and Loftus (2003) and Blouin and 
Riopelle (2005) to calculate CIs for repeated measure 
effects and display these in a figure showing means. We 
need further development of graphical conventions for 
displaying CIs on contrasts in complex designs. (See 
Fidler, Faulkner, & Cumming, 2008, for further discussion 
of an estimation-based approach to reporting and inter-
preting RCTs.)

When inspecting any figure with CIs, be careful to 
note the type—independent or repeated measure—of 
any comparison of interest. CIs on individual means are 
relevant only for assessing independent comparisons. It 
is therefore essential that any figure clearly indicate for 
each independent variable whether that variable has 
independent-groups or repeated measure status. In 
Figure 4, the lines joining the means within a group hint 
at a repeated measure variable, and including such lines 
is a convention worth supporting, but the convention is 
not used with sufficient consistency to be a dependable 
guide.

More generally, choosing in advance the comparisons 
or contrasts most relevant for answering research ques-
tions, rather than, for example, starting with an overall 
analysis of variance, can be an effective and easily-under-
stood strategy. Rosenthal, Rosnow, and Rubin (2000) 
described this approach, and Steiger (2004) explained 
how to calculate and use CIs for contrasts in a range of 
multiway designs. (See Guideline 16 in Table 1.)

Correlations.• CIs on Pearson r correlations are typi-
cally asymmetric, because values are bounded by −1 and 
1. Figure 5, from ESCI, displays independent correlations 
of .2 and .5, each with n = 50, with their 95% CIs. The 
figure illustrates that the CI is shorter and more asymmet-
ric as r approaches 1 (or −1). The CIs may seem disap-
pointingly long: For example, the CI for r1 of .2 is [−.08, 
.45], despite the n of 50. The figure also shows the CI on 
the difference between the two correlations, which also 

may seem surprisingly long: .3 [−.05, .64]. CIs on differ-
ences between correlations may be unfamiliar but are 
what we need if we wish to compare independent cor-
relations—although we can make an approximate assess-
ment of the difference by considering the two independent 
CIs and the extent of any overlap (Cumming, 2009).

NHST for correlations can be especially problematic, 
because the null hypothesis of zero correlation may be 
irrelevant. For example, if an r of .7 is an estimate of reli-
ability or validity, it may be described as highly statistically 
significant (i.e., significantly different from 0), even though 
a correlation of 0 is a completely inappropriate reference. 
A value of .7, or even .8 or higher, may be judged in con-
text to be terrible. As usual, seeing the estimate reported 
as .7 [.58, .79], is much more informative. (That CI assumes 
N = 100.) Cohen (1988) suggested fallback benchmarks of 
.1, .3, and .5 for small, medium, and large correlations, 
respectively, but this example illustrates that for r, any 
such benchmarks are likely to be inappropriate in many 
contexts: As usual, we need informed judgment.

Proportions.• Proportions are also bounded, lying 
between 0 and 1, and CIs on proportions are thus gener-
ally asymmetric. Consider Table 2, a two-by-two table of 
fictitious frequencies. Traditionally, χ2 would be used to 
test the null hypothesis of independence of the two vari-
ables: χ2(1, N = 40) = 4.29, p = .04. Instead of that dichot-
omous hypothesis test, it would be better to ask an 
estimation question about the difference between the 
proportions of students with and without distinction who 
complete college. The proportions are 17/20 and 11/20, 
respectively. These proportions are independent, so ESCI 
can calculate the 95% CI on the difference, which is .3 
[.02, .53] (Finch & Cumming, 2009). The 95% CI just 
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Fig. 5.• Values and 95% confidence intervals for two independent Pear-
son correlations, r1 and r2, and the difference between them. For each 
correlation, n = 50.
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misses zero, which is consistent with the p value of .04 in 
the χ2 analysis. The estimation approach is, as usual, 
more informative, because it gives a point estimate (.3) in 
answer to our question and a CI to indicate the precision. 
With such small frequencies, it is not surprising that our 
CI is so long. (See Guideline 17 in Table 1.)

Assessment of model fit.• Consider a somewhat differ-
ent example of CI use. Velicer et al. (2008) used a num-
ber of previous data sets and expert judgment to generate 
quantitative predictions for 15 variables from the trans-
theoretical model of behavior change. They then took an 
entirely independent data set and estimated the 15 vari-
ables. Because the test data set was large (N of approxi-
mately 4,000), the CIs were short. Velicer et al. found that 
the CIs included the predicted values for 11 of the 15 
variables, a result they interpreted as strong support for 
most aspects of the model. Examination of 2 variables for 
which the predictions were rather inaccurate suggested 

lines for further theoretical and empirical investigation. 
Such assessment of quantitative models accords well 
with Guideline 6 and the argument of Rodgers (2010) 
that psychology should become more quantitative.

Meta-analysis

My discussions of ESs and CIs focus on the “quantitative” 
in our core aim (Guideline 6); I now turn to the “cumula-
tive,” and meta-analysis, which is essentially estimation 
extended to more than one study. The basics of meta-
analysis are best revealed by a beautiful picture, the forest 
plot, which is readily understood even by beginning stu-
dents (Cumming, 2006). Figure 6 shows a forest plot that 
summarizes the findings of six past studies that estimated 
the response time (RT) for some task, as well as the find-
ings of a new study, labeled “Mine (2011).” To the left of 
the plot, the mean, standard deviation, and N for each 
study are reported; these means and their 95% CIs appear 
in the forest plot. (In practice, we might log-transform the 
values, or use some other strategy that recognizes posi-
tive skew, but here I use simple RT means.) The square 
symbols for the means vary in size to signal the relative 
weighting of each study in the meta-analysis; small stan-
dard deviation and large N give higher precision, a shorter 
CI, and greater weight. The diamonds report the results 
(weighted means and 95% CIs) of meta-analyses of the 
six previous studies and of those six studies plus our cur-
rent study. Our study has not shifted the overall estimate 
much! The shortness of the diamonds relative to at least 
most of the contributing CIs illustrates how meta-analysis 
usually increases the precision of estimates.

Table 2.• Numbers of Students With and Without Distinction 
in High School Who Did or Did Not Complete College Within 
5 Years

Distinction on completion  
of high school?

Complete college  
within 5 years? Yes No Total

Yes 17 11 28
No  3  9 12
• Total 20 20 40

Fig. 6.• A forest plot from Exploratory Software for Confidence Intervals (ESCI). In this part screen image, means and 95% confidence inter-
vals (CIs) are shown for six previous studies and for the “current” study; each study’s mean, standard deviation, and N are shown at the left. 
The size of the square symbols for the means signals the relative weightings of the studies in the meta-analysis. The diamonds report the 
results (means and 95% CIs) of random-effects meta-analyses of the six previous studies (upper diamond) and of all seven studies (lower 
diamond).
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Figure 6 illustrates a meta-analysis in which every 
study used the same original measure, RT in millisec-
onds. In psychological science, however, different studies 
usually use different original measures, and for meta-
analysis we need a standardized, or units-free, ES mea-
sure, most commonly Cohen’s d or Pearson’s r. The 
original-units ESs need to be transformed into ds or rs for 
meta-analysis.

Many published meta-analyses report substantial proj-
ects, integrating results from dozens or even hundreds of 
studies. Cooper provided detailed guidance for the seven 
steps involved in a large meta-analysis (Cooper, 2010), as 
well as advice on reporting a meta-analysis in accord 
with the Meta-Analysis Reporting Standards (MARS) spec-
ified in APA’s (2010, pp. 251–252) Publication Manual 
(Cooper, 2011). Borenstein, Hedges, Higgins, and 
Rothstein (2009) discussed many aspects of meta-analy-
sis, especially data analysis, and the widely used CMA 
software (available from Biostat, www.Meta-Analysis 
.com).

It is vital to appreciate that meta-analysis is no mere 
mechanical procedure, and that conducting a large meta-
analysis requires domain expertise and informed judg-
ment at every step: defining questions, finding and 
selecting relevant literature, choosing variables and mea-
sures, extracting and then analyzing data, assessing pos-
sible moderating variables, and more. Even so, conducting 
at least a small-scale meta-analysis should be practically 
achievable without extended specialized training.

Large meta-analyses may be most visible, but meta-
analysis can often be very useful on a smaller scale as 
well. A minimum of two results may suffice for a meta-
analysis. Consider meta-analysis to combine results from 
several of your studies, or from your current study plus 
even only one or two previous studies. You need not 
even notice whether any individual study would give sta-
tistical significance—we care only about the CIs, and 
especially the result of the meta-analysis, which may be 
a pleasingly short CI. (See Guideline 18 in Table 1.)

Heterogeneity.• Imagine that all the studies in Figure 6 
had the same N and were so similar that we can assume 
they all estimate the same population mean, µ. In that 
case, the study-to-study variation in means should be 
similar to that in the dance in Figure 1. In other words, 
the bouncing around in the forest plot should match 
what we expect simply because of sampling variability. If 
there is notably more variability than this, we can say the 
set of studies is heterogeneous, and there may be one or 
more moderating variables that affect the ES. Meta-anal-
ysis offers us more precise estimates, but also the highly 
valuable possibility of identifying such moderators.

Suppose that some of the studies in Figure 6 hap-
pened to use only female participants (F studies), and 
others only males (M studies). We can meta-analyze the 

sets of F and M studies separately and assess the two 
results, using, of course, the two CIs. If we find the over-
all F mean to be, for example, notably smaller than the M 
mean, gender is a likely moderator of RT. We cannot be 
sure, because our moderator analysis is correlational 
rather than experimental—there was no random alloca-
tion of studies to gender. Some variable or variables other 
than gender may be the cause of the observed difference. 
But moderator analysis can identify a variable as possibly 
important even when no single study has manipulated 
that variable! That is a highly valuable feature of meta-
analysis. Moderator analysis can extend to continuous 
variables if we use meta-regression: The ES from each 
study is regressed against the value of some variable 
(e.g., participants’ mean age) that varies over studies. An 
important part of meta-analysis is choosing in advance a 
small number of potential moderating variables for inves-
tigation, and coding the value of those variables for each 
study, for use in the moderator analysis.

Models for meta-analysis.• If we assume that every 
study estimates the same µ, we are using the fixed-effect 
model. More realistic, and what we should routinely pre-
fer (Schmidt, Oh, & Hayes, 2009), is the random-effects 
model, which assumes that the population means esti-
mated by the different studies are randomly chosen from 
a superpopulation with standard deviation of τ. There-
fore, τ is an index of heterogeneity. In the meta-analysis 
of all seven studies in Figure 6, the estimate of τ is  
33.7 ms [0, 68.4]—a long CI because we have only a small 
number of studies. The data are compatible with τ being 
as small as zero (no heterogeneity; i.e., the fixed-effect 
model applies) or as large as 68 ms (considerable hetero-
geneity). With more studies, a substantial estimated τ, 
and a shorter CI, we may have clear evidence of hetero-
geneity, which would encourage us to seek one or more 
moderators. The random-effects model may be our 
choice, but its assumptions are also possibly unrealistic; 
better models would be welcome. The varying-coeffi-
cient model of Bonett (2009) is attractive, although it has 
not yet achieved widespread recognition. (See Guideline 
19 in Table 1.)

Meta-analysis and NHST.• Meta-analysis need make 
no use of NHST. Indeed, NHST has caused some of its 
worst damage by distorting the results of meta-analysis, 
which can give valid results only if an unbiased set of 
studies is included, which usually means we should try to 
find and include all relevant studies. As I mentioned ear-
lier when discussing research integrity, selective publica-
tion biases meta-analysis. Imagine meta-analyzing only 
the replications in Figure 1 for which p is less than .05: 
The combined ES would be much too large. Two strate-
gies have been developed in response to this problem. 
First, great effort is needed to find all relevant studies, 

www.Meta-Analysis.com
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whether or not published. We need to seek conference 
papers, theses, and technical reports, and make direct 
inquiries to all relevant researchers we can reach. Sec-
ond, we can use a number of ways to estimate the extent 
to which a set of studies we are meta-analyzing might be 
biased because relevant studies are missing (Borenstein 
et al., 2009, chap. 30). Both these approaches offer only 
partial solutions to publication bias, which can be fully 
solved only when all relevant research is made available 
publicly—when we have achieved research integrity.

The argument (Simmons et al., 2011) that any pub-
lished result may be distorted to an unknown extent by 
selection and other inappropriate data-analytic practices 
is worrying. Suddenly, everything seems to be, to some 
unknown extent, in doubt—and this will remain the case 
until we have full research integrity. Of course, we cannot 
expect meta-analysis to produce valid results from invalid 
input. Meta-analysts have little option but to include all 
studies that meet their selection criteria; however, they 
need to be alert to the possibility that any study, or any 
set of studies from a single laboratory, may be biased. If, 
for example, a set of studies is distinctly too homoge-
neous—it shows distinctly less bouncing around than we 
would expect from sampling variability, as illustrated in 
Figure 1—we can suspect selection or distortion of some 
kind. Further discussion of this serious problem for meta-
analysis is needed.

Even so, meta-analysis can give the best estimates jus-
tified by research to date, as well as the best guidance for 
practitioners. By also identifying important variables, it 
can bring order to a messy literature, give theoretical 
insight, and suggest directions for future research. These 
are all important aspects of a cumulative discipline. 
Beyond meta-analysis of ESs and CIs is the even more 
enticing prospect of meta-analysis of the full data from 
previous studies (Cooper & Patall, 2009), which should 
become possible more often as researchers post their 
raw data on the Internet.

Meta-analytic thinking.• Any one study is most likely 
contributing rather than determining; it needs to be con-
sidered alongside any comparable past studies and with 
the assumption that future studies will build on its contri-
bution. That is meta-analytic thinking (Cumming & Finch, 
2001), an important aspect of the new statistics, and Step 
7 in our strategy. It also implies appreciation of replica-
tion, and of our result as one from an infinite dance, as 
Figure 1 suggests. Meta-analytic thinking emphasizes that 
we must report our results in sufficient detail, with appro-
priate ESs and CIs, to facilitate inclusion in future meta-
analyses. (See Guideline 20 in Table 1.)

Research planning

One of the most challenging and creative parts of empiri-
cal research is devising ingenious studies likely to 

provide precise answers to our research questions. I refer 
to such studies as informative. The challenge of research 
design and planning is to increase informativeness, and it 
is worth much time and effort to do this: We should 
refine tasks, seek measures likely to have better reliability 
and validity, consider participant selection and training, 
use repeated measures when appropriate, consider statis-
tical control, limit design complexity so informativeness 
is increased for the remaining questions, use large sam-
ple sizes, and consider measuring more than once and 
then averaging; in general, we should reduce error vari-
ability in any way we can, and call on the full range of 
advice in handbooks of design and analysis. High infor-
mativeness is gold. (See Guideline 21 in Table 1.)

Statistical power.• Statistical power is the probability 
that if the population ES is equal to δ, a target we specify, 
our planned experiment will achieve statistical signifi-
cance at a stated value of α. I am ambivalent about statis-
tical power for two reasons. First, it is defined in terms of 
NHST, so it has meaning or relevance only if we are using 
NHST, and has no place when we are using the new sta-
tistics. However, anyone who uses NHST needs to con-
sider power. (See Guideline 22 in Table 1.)

Second, the term power is often used ambiguously, 
perhaps referring to the narrow technical concept of sta-
tistical power, but often referring more broadly to the 
size, sensitivity, quality, or informativeness of an experi-
ment. For clarity, I suggest using informativeness, as I did 
earlier, for this second, broader concept.

For a given experimental design, statistical power is a 
function of sample size, α, and the target δ. Increasing 
sample size increases informativeness as well as power, 
but we can also increase power merely by choosing α of 
.10 rather than .05, or by increasing the target δ—neither 
of which increases informativeness. Therefore, high 
power does not necessarily imply an informative or high-
quality experiment.

Funding bodies and ethical review boards often 
require justification for proposed experiments, especially 
proposed sample sizes. It is particularly important to jus-
tify sample sizes when human participants may be sub-
jected to inconvenience or risk. Power calculations have 
traditionally been expected, but these can be fudged: For 
example, power is especially sensitive to δ, so a small 
change to the target δ may lead to a substantial change in 
power. For a two-independent-groups design with n of 
32 in each group, choosing δ of 0.50 gives power of .50, 
as in Figure 1, but δ of 0.60 or 0.70 gives power of .67 or 
.79, respectively. Power of .80 is, following Cohen (1988), 
often regarded as acceptable, even though 20% of such 
experiments would fail to achieve statistical significance 
if the population ES were equal to the stated target δ. For 
several simple designs, ESCI provides power curves and 
calculations. Beyond that, I recommend the excellent free 
software G*Power 3 (available at tiny.cc/gpower3).
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One problem is that we never know true power, the 
probability that our experiment will yield a statistically 
significant result, because we do not know the true δ—
that is why we are doing the experiment! All we can say 
is that our experiment has power of x to detect a stated 
target δ. Any statement that an experiment has power of 
x, without specifying the target δ, is meaningless.

Should we calculate power after running the experi-
ment, using our observed estimate of δ as the target? That 
is post hoc power. The trouble is that post hoc power tells 
us about the result, but little if anything about the experi-
ment itself. In Figure 1, for example, Experiments 23, 24, 
and 25 give post hoc power of .17, .98, and .41, respec-
tively. Post hoc power can often take almost any value, so 
it is likely to be misleading, as Hoenig and Heisey (2001) 
argued. If computer output provides a value for power, 
without asking you to specify a target ES, it is probably 
post hoc power and should be ignored. (See Guideline 
23 in Table 1.)

Precision for planning.• In an NHST world, statistical 
power can support planning. In an estimation world, we 
need instead precision for planning—sometimes called 

accuracy in parameter estimation (AIPE). We specify 
how large a MOE we are prepared to accept and then 
calculate what N is needed to achieve a CI with a MOE 
no longer than that.

Familiarity with ESs and CIs should make it natural to 
think of an experiment aiming for precision of f units of 
σ, the population standard deviation (and thus the units 
of Cohen’s δ). Figure 7, from ESCI, displays precision-
for-planning curves. The vertical line marks an f of 0.4 
and tells us that a two-independent-groups experiment 
would on average give a MOE no larger than 0.4 × σ  
if the groups each had an n of 50. A complication,  
however, is that the MOE varies from experiment to 
experiment, as Figure 1 illustrates. The lower curve in 
the figure gives n for an experiment that on average 
yields a satisfactory MOE. To do better, we may set the 
level of assurance, γ, to 99, as in the upper curve  
in Figure 7, which tells us that two groups with n of 65 
will give a MOE no longer than our target of 0.4 × σ on 
99% of occasions. I hope funding bodies and ethics 
review boards will increasingly look for precision-for-
planning analyses that justify sample sizes for proposed 
research.
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Figure 7 shows that small changes to f can indicate the 
need for large changes to n. The corresponding figure for 
a repeated measure experiment indicates that much 
smaller Ns will suffice if we have a reasonably large cor-
relation between the measures. Such figures should give 
us practical guidance in choosing experimental designs 
and sample sizes likely to make an experiment suffi-
ciently informative to be worth running. After we con-
duct an experiment, the MOE calculated from the data 
tells us, of course, what precision we achieved. Previously 
(Cumming, 2012, chap. 13), I have discussed precision 
for planning, and ESCI provides calculations for several 
simple situations. Precision-for-planning techniques are 
being developed for an increasing range of ES measures 
and designs (Maxwell, Kelley, & Rausch, 2008). (See 
Guideline 24 in Table 1.)

New-statistics resources

A wide range of new-statistics resources has become 
available in recent years. As mentioned earlier, exten-
sions of most of the discussions in this estimation section, 
and information about ESCI, are available elsewhere 
(Cumming, 2012, 2013). Fidler and I (Fidler & Cumming, 
2013) also discussed many of the topics of this article. 
Kline (2013b) discussed many new-statistics issues and 
provided guidance for deriving and presenting ESs and 
CIs in a wide range of situations, including meta-analysis. 
Kline’s book goes further than mine in several ways, 
including consideration of measurement error as well as 
sampling variability, more complex designs, and boot-
strapping and Bayesian techniques. Ellis (2010) provided 
an accessible introduction to a range of ES measures. 
Fritz, Morris, and Richler (2012) discussed a range of ES 
measures, especially in the context of multiway designs, 
with an emphasis on practical use and interpretation. 
Grissom and Kim (2012) discussed a very wide range of 
ES measures and described in most cases how to calcu-
late the CIs on those measures. They considered ESs and 
CIs for an extensive range of designs, including multivari-
ate ones. Smithson (2003) explained how to calculate CIs 
on R2 and a range of other ES measures, and has pro-
vided very useful scripts (Smithson, n.d.) to assist in these 
calculations. Altman, Machin, Bryant, and Gardner (2000) 
provided simple guidance for using CIs with many basic 
ES measures used in medicine, including risk ratios and 
odds ratios.

Statistics textbooks are increasingly including coverage 
of ESs and CIs, as well as at least brief mention of meta-
analysis, even if they have not yet relegated NHST to a 
secondary topic, required only to assist understanding of 
past published research. An early mover was Tabachnick 
and Fidell’s (2007) book, which includes guidance for cal-
culating CIs in many multivariate situations. Baguley’s 

(2012) advanced textbook includes extensive guidance 
on estimation techniques.

A wide range of software that is helpful for under-
standing and calculating ESs and CIs is freely available on 
the Internet. In many cases, a Web site is linked to a book 
or journal article, but provides software or links that are 
of use independently of the book or article. I have already 
mentioned ESCI (Cumming, 2013). Ellis’s (2010) book is 
accompanied by a Web site (Ellis, n.d.) that provides 
extensive discussion of ESs and a link to a calculator for 
Cohen’s d. Kline’s (2013b) book is accompanied by a Web 
site (Kline, 2013a) that provides a very useful set of links 
to software and calculators for a variety of ESs and CIs, 
arranged to correspond with successive chapters in the 
book. Becker (1999) has provided a simple calculator for 
d and r in a few common situations, and Soper (2006–
2013) has provided a wide range of statistical calculators, 
including calculators for many ES measures and CIs. 
Another extensive collection of ES calculators, with CIs 
provided also in many cases, is available from Wilson 
(n.d.), although this Web site does not yet provide full 
details of the formulas used. More specialized software, in 
the R language, for calculating ESs and CIs on ESs includes 
MBESS (Kelley, 2007; Kelley, n.d.) and bootES (Kirby & 
Gerlanc, 2013; Gerlanc & Kirby, 2013). As always, when 
using statistical software, especially online calculators, it is 
important to be sure that the formulas are appropriate for 
your situation. Calculation of d needs particular care, as I 
discussed earlier in the section on Cohen’s d.

Research integrity from an estimation 
perspective

To conclude this discussion of estimation, I want to revisit 
research integrity. Many contributors to discussions of 
research integrity, including Ioannidis (2005), have iden-
tified use of statistical significance as a crucial part of the 
problem. Even so, most contributions have been framed 
in terms of NHST. For example, discussion of replication 
is usually in terms of whether a replication experiment is 
“successful,” with statistical significance used as the crite-
rion for success. It would be valuable to put such dichot-
omous thinking aside and to revisit all contributions to 
the discussion from an estimation perspective. If we 
made no reference to NHST, and routinely used estima-
tion and meta-analysis, how would the arguments 
change? Replication attempts would not be labeled 
dichotomously as successes or failures, but would usu-
ally yield, via meta-analysis, more precise estimates. Not 
using NHST would remove the pressure to find ways to 
tweak p to get past the sharp criterion for statistical sig-
nificance (Masicampo & Lalande, 2012). CIs would indi-
cate the extent of uncertainty, weaken the delusion that a 
single result is definitive, and make it more natural to 
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seek further evidence or conduct another study. Meta-
analytic thinking also prompts replication.

In these ways, shifting from NHST to the new statistics 
should ease the problems, but serious challenges remain. 
After this shift, it will be just as important that variables 
and analyses not be selected to give desired results, and 
that research be fully prespecified and then reported in 
full detail. (See Guideline 25 in Table 1.)

Toward a Cumulative Quantitative 
Discipline

The statistical-reform context

As I mentioned, for more than half a century, scholars have 
been publishing cogent critiques of NHST, documenting 
the damage it does, and urging change. There have been 
very few replies, but also little reduction in reliance on 
NHST. Two reform attempts are worth noting. In the 1970s 
and 1980s, Ken Rothman published many articles in medi-
cal journals advocating use of CIs and avoidance of NHST. 
His efforts and those of other researchers led the 
International Committee of Medical Journal Editors (1988) 
to issue guidelines specifying that CIs should be reported 
whenever possible. In 1990, Rothman became the found-
ing editor of Epidemiology, declaring that the journal 
would not publish p values. For the 10 years of his editor-
ship, the journal flourished while publishing almost no 
NHST (Fidler, Thomason, Cumming, Finch, & Leeman, 
2004), demonstrating again that good science does not 
require p values. More broadly across medicine, for more 
than two decades, most empirical articles have reported 
CIs. However, NHST is almost always reported as well, the 
CIs are only sometimes interpreted, and conclusions are 
usually based on p values. Reliance on NHST continues, to 
the extent that Ioannidis (2005) identified it as a major 
underlying cause of the problems he discussed.

In psychology, Geoff Loftus in 1993 took editorship of 
Memory & Cognition primarily to try to improve its statis-
tical practices. He strongly encouraged use of figures 
with error bars and avoidance of p values. Over the 4 
years of his editorship, use of figures with error bars 
increased, but NHST remained close to universal; after he 
left the journal, fewer figures with error bars appeared 
(Finch et al., 2004). More generally, the fascinating his-
tory of the spread of NHST in a number of disciplines, 
the numerous devastating critiques, and the generally 
disappointing efforts at reform have been described in 
scholarly detail by Fidler (2005).

Reform efforts by the Association for 
Psychological Science

Why should the current reform efforts of Psychological 
Science and the Association for Psychological Science 

(APS) be more successful? There are at least four reasons. 
First, heightened recognition of research-integrity issues 
demands change, and the central causal role of NHST 
demands that it be scrutinized anew. Second, the push 
for change comes not only from one insightful and enter-
prising editor, but also from other APS leaders. Third, 
over the past decade, additional helpful resources, as 
cited earlier, have become available to support the practi-
cal use of estimation, including meta-analysis. Fourth, 
other important players are also supporting change: For 
example, as mentioned earlier, APA’s (2010) Publication 
Manual included unequivocal statements that interpreta-
tion should be based on estimation. The Psychonomic 
Society’s (2012) statistical guidelines highlight problems 
with NHST and recommend use of better techniques, 
notably estimation. In addition, the Task Force on 
Publication and Research Practices of the Society for 
Personality and Social Psychology (SPSP Task Force on 
Publication and Research Practices, in press) made simi-
lar recommendations and considered the implications for 
research training.

Simply do not use NHST

I want to be clear about what I am not advocating. I am 
not suggesting that we simply report CIs alongside NHST. 
That would most likely lead to the situation currently 
found in medicine—CIs are reported but not routinely 
interpreted, and conclusions are largely based on p val-
ues. Nor am I suggesting that we report CIs, but not 
NHST, and then base interpretation primarily on whether 
or not CIs include zero. That would merely be NHST by 
stealth. These two approaches would amount to NHST 
business as usual, perpetuation of all the old problems, 
and no extra impetus toward research integrity and a 
cumulative quantitative discipline.

Instead, I recommend following as much as possible 
all the steps in the eight-step strategy. I include “when-
ever possible” in my recommendations that we avoid 
NHST, to cover any cases in which it is not possible to 
calculate a relevant CI; I expect such cases to be rare, and 
to become rarer. I strongly suggest that the best plan is 
simply to go cold turkey, omit any mention of NHST, and 
focus on finding words to give a meaningful interpreta-
tion of the ES estimates and CIs that give the best answers 
to your research questions. To be clear, I conclude from 
the arguments and evidence I have reviewed that best 
research practice is not to use NHST at all; we should 
strive to adopt best practice, and therefore should simply 
avoid NHST and use better techniques.

Yes, your studies are likely to be more complex than 
the simple examples I have discussed, but I have 
described five approaches to interpreting CIs—not count-
ing the interpretation based on NHST—hoping that one 
or more will be helpful in any particular situation. If it is 
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relevant, you can note that a CI is far, or very far, from 
zero, and therefore zero is a correspondingly implausible 
true value for the parameter being estimated; you can do 
this without invoking p values and while still focusing on 
the positive information the CI gives about likely values 
of the parameter.

Enjoy the benefits

I suggest that we note and appreciate whenever using a 
new-statistics approach gives insight: Perhaps a small 
meta-analysis gives a pleasingly precise estimate that is 
helpful to a clinical colleague, or a fully prespecified 
study provides results we can rely on while considering 
a tricky issue, or formulating our research questions in 
estimation terms prompts us to develop a small quantita-
tive model. Savor such moments: They signal progress 
and should become the norm.

The key idea is meta-analytic thinking: Appreciate any 
study as part of a future meta-analysis. With good under-
standing of meta-analysis, we know how essential it is 
that our research literature be complete and trustworthy, 
and that all studies be reported in full and accurate detail. 
Of course, replication is required and contributes to bet-
ter estimates and research progress. NHST is irrelevant, 
so we can stop worrying about it and just not mention 
it—a sure way to avoid the damage it does. There is no 
need for polemics about whether we are formally ban-
ning NHST. It can simply fall by the wayside, and after a 
while we will scarcely notice it has gone, because we are 
focused on the exciting work of building a cumulative 
quantitative discipline with integrity.
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