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Abstract
Statistical inference in psychology has traditionally relied heavily on p-value significance testing. This approach to drawing
conclusions from data, however, has been widely criticized, and two types of remedies have been advocated. The first proposal
is to supplement p values with complementary measures of evidence, such as effect sizes. The second is to replace inference
with Bayesian measures of evidence, such as the Bayes factor. The authors provide a practical comparison of p values, effect
sizes, and default Bayes factors as measures of statistical evidence, using 855 recently published t tests in psychology. The
comparison yields two main results. First, although p values and default Bayes factors almost always agree about what
hypothesis is better supported by the data, the measures often disagree about the strength of this support; for 70% of the data
sets for which the p value falls between .01 and .05, the default Bayes factor indicates that the evidence is only anecdotal.
Second, effect sizes can provide additional evidence to p values and default Bayes factors. The authors conclude that the
Bayesian approach is comparatively prudent, preventing researchers from overestimating the evidence in favor of an effect.
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Experimental psychologists use statistical procedures to

convince themselves and their peers that the effect of interest

is real, reliable, replicable, and hence worthy of academic

attention. A representative example comes from Mussweiler

(2006), who studied whether particular actions can activate a

corresponding stereotype. To test this hypothesis empirically,

Mussweiler unobtrusively induced half the participants, the

experimental group, to move in a portly manner that is stereo-

typic for the overweight. The other half, the control group,

made no such movements. Next, all participants were given

an ambiguous description of a target person and then used a

9-point scale (ranging from 1 ¼ not at all to 9 ¼ very) to rate

this person on dimensions that correspond to the overweight

stereotype (e.g., ‘‘unhealthy,’’ ‘‘sluggish,’’ and ‘‘insecure’’).

To assess whether performing the stereotypic motion affected

the rating of the ambiguous target person, Mussweiler

computed a t statistic, t(18) ¼ 2.1, and found that this value

corresponded to a low p value (p < .05).1 Following conven-

tional protocol, Mussweiler concluded that the low p value

should be taken to provide ‘‘initial support for the hypothesis that

engaging in stereotypic movements activates the corresponding

stereotype’’ (Mussweiler, 2006, p. 28).

The use of t tests and corresponding p values in this way

constitutes a common and widely accepted practice in the

psychological literature. It is, however, not the only possible

or reasonable approach to measuring evidence and making

statistical and scientific inferences. Indeed, the use of t tests

and p values has been widely criticized (e.g., Cohen, 1994;

Cumming, 2008; Dixon, 2003; Howard, Maxwell, &

Flemming, 2000; Lee & Wagenmakers, 2005; Loftus, 1996;

Nickerson, 2000; Wagenmakers, 2007). There are at least two

different criticisms, coming from different perspectives and

resulting in different remedies. First, many have argued that

null hypothesis tests should be supplemented with other

Corresponding Author:

Ruud Wetzels, Department of Psychology, University of Amsterdam,

Roetersstraat 15, 1018 WB Amsterdam, The Netherlands

E-mail: wetzels.ruud@gmail.com

Perspectives on Psychological Science
6(3) 291–298
ª The Author(s) 2011
Reprints and permission:
sagepub.com/journalsPermissions.nav
DOI: 10.1177/1745691611406923
http://pps.sagepub.com

 at Universiteit van Amsterdam SAGE on May 24, 2011pps.sagepub.comDownloaded from 

http://pps.sagepub.com/


statistical measures, such as confidence intervals and effect

sizes. Within psychology, this approach to remediation has

sometimes been institutionalized, being required by journal

editors or recommended by the American Psychological Asso-

ciation (e.g., American Psychological Association, 2010;

Cohen, 1988; Erdfelder, 2010; Wilkinson & the Task Force

on Statistical Inference, 1999).

A second, more fundamental criticism that comes from

Bayesian statistics is that there are basic conceptual and prac-

tical problems with p values. Although Bayesian criticism of

psychological statistical practice dates back to at least

Edwards, Lindman, and Savage (1963), it has become espe-

cially prominent and increasingly influential in the last decade

(e.g., Dienes, 2008; Gallistel, 2009; Kruschke, 2010a, 2010c;

Lee, 2008; Myung, Forster, & Browne, 2000; Rouder,

Speckman, Sun, Morey, & Iverson, 2009). One standard

Bayesian measure for quantifying the amount of evidence from

the data in support of an experimental effect is the Bayes factor

(Gönen, Johnson, Lu, & Westfall, 2005; Rouder et al., 2009;

Wetzels, Raaijmakers, Jakab, & Wagenmakers, 2009). The

measure takes the form of an odds ratio: It is the probability of

the data under one hypothesis relative to that under another

(Dienes, 2011; Kass & Raftery, 1995; Lee & Wagenmakers, 2005).

With this background, it seems that psychological statistical

practice currently stands at a three-way fork in the road. Stay-

ing on the current path means continuing to rely on p values.

A modest change is to place greater focus on the additional

inferential information provided by effect sizes and confidence

intervals. A radical change is struck by moving to Bayesian

approaches, such as Bayes factors. The path that psychological

science chooses seems likely to matter. It is not just that there

are philosophical differences between the three choices. It is

also clear that the three measures of evidence can be mutually

inconsistent (e.g., Berger & Sellke, 1987; Rouder et al., 2009;

Wagenmakers, 2007; Wagenmakers & Grünwald, 2006;

Wagenmakers, Lodewyckx, Kuriyal, & Grasman, 2010).

In this article, we assess the practical consequences of

choosing among inference by p values, by effect sizes, and

by Bayes factors. By practical consequences, we mean the

extent to which conclusions of extant studies change according

to the inference measure that is used. To assess these practical

consequences, we reanalyzed 855 t tests reported in articles

from the 2007 issues of Psychonomic Bulletin & Review (PBR)

and Journal of Experimental Psychology: Learning, Memory,

and Cognition (JEP:LMC). For each t test, we compute the

p value, the effect size, and the Bayes factor and study the

extent to which they provide information that is redundant,

complementary, or inconsistent. On the basis of these analyses,

we suggest the best direction for measuring statistical evidence

from psychological experiments.

Three Measures of Evidence

In this section, we describe how to calculate and interpret the

p value, the effect size, and the Bayes factor. For concreteness,

we use Mussweiler’s (2006) study on the effect of action on

stereotypes. The mean score of the control group, Mc, was

5.8 on a weight-stereotype scale (sc ¼ 0.69, nc ¼ 10), and

the mean score of the experimental group, Me, was 6.4

(se¼ 0.66, ne¼ 10).

The p value

The interpretation of p values is not straightforward, and their

use in hypothesis testing is heavily debated (Cohen, 1994;

Cortina & Dunlap, 1997; Cumming, 2008; Dixon, 2003; Frick,

1996; Gigerenzer, 1993, 1998; Hagen, 1997; Killeen, 2005,

2006; Kruschke, 2010a, 2010c; Lee & Wagenmakers, 2005;

Loftus, 1996; Nickerson, 2000; Schmidt, 1996; Wagenmakers

& Grünwald, 2006; Wainer, 1999). The p value is the probabil-

ity of obtaining a test statistic (in this case, the t statistic) at

least as extreme as the one that was observed in the experiment,

given that the null hypothesis is true and the sample is gener-

ated according to a specific intended procedure, such as fixed

sample size. Fisher (1935) interpreted these p values as evi-

dence against the null hypothesis. The smaller the p value, the

more evidence there was against the null hypothesis. Fisher

viewed these values as self-explanatory measures of evidence

that did not need further guidance. In practice, however, most

researchers (and reviewers) adopt a .05 cutoff: p values less

than .05 constitute evidence for an effect, and those greater than

.05 do not. More fine-grained categories are possible, and

Wasserman (2004, p. 157) proposes the gradations shown in

the top of Table 1. Note that the top part of Table 1 lists various

categories of evidence against the null hypothesis. A basic

limitation of null hypothesis significance testing is that it does

not allow a researcher to gather evidence in favor of the null

(Dennis, Lee, & Kinnell, 2008; Gallistel, 2009; Rouder et al.,

2009; Wetzels et al., 2009).

For the data from Mussweiler (2006), we compute a p value

based on the t test. The t test is designed to test whether a dif-

ference between two means is significant. First, we calculate

the t statistic:

t ¼ Me �Mcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

pooled
1
ne
þ 1

nc

� �r ¼ 6:42� 5:79ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:46 1

10
þ 1

10

� �q ¼ 2:09

where Me and Mc are the means of both groups, nc and ne are

the sample sizes, and s2
pooled estimates the common population

variance:

s2
pooled ¼

ne � 1ð ÞS2
e þ ðnc � 1Þs2

c

ne þ nc � 2

Next, the t statistic with ne þ nc � 2 ¼ 18 degrees of freedom

results in a p value slightly larger than .05 (& .051). For our

concrete example, Table 1 leads to the conclusion that the

p value is on the cusp between ‘‘no evidence against H0’’ and

‘‘positive evidence against H0.’’
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The effect size

Effect sizes quantify the magnitude of an effect and serve as a

measure of how much the results deviate from the null hypothesis

(Cohen, 1988; Richard, Bond, & Stokes-Zoota, 2003; Rosenthal,

1990; Rosenthal & Rubin, 1982; Thompson, 2002). For the data

from Mussweiler (2006), the effect size, d, is calculated as follows:

d ¼ Me � Mc

spooled

¼ 6:42� 5:79

0:68
¼ 0:93

Note that in contrast to the p value, the effect size is inde-

pendent of sample size; increasing the sample size does not

increase effect size but instead allows it to be estimated more

accurately.

Effect sizes are often interpreted in terms of the categories

introduced by Cohen (1988), as listed in the middle of Table 1,

ranging from ‘‘small’’ to ‘‘very large.’’ For our concrete example,

d ¼ 0.93, and we conclude that this effect is large to very large.

Interestingly, the p value was on the cusp between the categories

‘‘no evidence against H0’’ and ‘‘positive evidence against H0,’’

whereas the effect size indicates the effect to be strong.

The Bayes factor

In Bayesian statistics, uncertainty (or degree of belief) is quan-

tified by probability distributions over parameters. This makes

the Bayesian approach fundamentally different from the

classical ‘‘frequentist’’ approach, which relies on sampling

distributions of data (Berger & Delampady, 1987; Berger &

Wolpert, 1988; Jaynes, 2003; Lindley, 1972).

Within the Bayesian framework, one may quantify the

evidence for one hypothesis relative to another. The Bayes

factor is the most commonly used (although certainly not the

only possible) Bayesian measure for doing so (Jeffreys, 1961;

Kass & Raftery, 1995). The Bayes factor is the probability of

the data under one hypothesis relative to the other. When a

hypothesis is a simple point, such as the null, then the probabil-

ity of the data under this hypothesis is simply the likelihood

evaluated at that point. When a hypothesis consists of a range

of points, such as all positive effect sizes, then the probability

of the data under this hypothesis is the weighted average of the

likelihood across that range. This averaging automatically

controls for the complexity of different models, as has been

emphasized in Bayesian literature in psychology (e.g., Pitt,

Myung, & Zhang, 2002; Rouder et al., 2009).

We take as the null that a parametera is restricted to 0 (i.e., H0:

a ¼ 0), and we take as the alternative that a is not zero (i.e., HA:

a 6¼ 0). In this case, the Bayes factor given data D is simply the

ratio where the integral in the denominator takes the average

evidence over all values of a, weighted by the prior probability

of those values p(a | HA) under the alternative hypothesis.

An alternative—but formally equivalent—conceptualization

of the Bayes factor is

BFA0 ¼
pðDjHAÞ
pðDjH0Þ

¼
R

pðDjHA; aÞpðajHAÞda
pðDjH0Þ

;

as a measure of the change from prior model odds to posterior

model odds, brought about by the observed data. This change is

often interpreted as the weight of evidence (Good, 1983, 1985).

Before seeing the data D, the two hypotheses H0 and HA are

assigned prior probabilities p(H0) and p(HA). The ratio of the

two prior probabilities defines the prior odds. When the data

D are observed, the prior odds are updated to posterior odds,

which is defined as the ratio of the posterior probabilities,

p(H0 | D) and p(HA | D):

p HAjDð Þ
p H0jDð Þ ¼

p DjHAð Þ
p DjH0ð Þ �

p HAð Þ
p H0ð Þ :ð1Þ

Equation 1 shows that the change from prior odds to posterior

odds is quantified by p(D| HA)/ p(D| H0): the Bayes factor, BFA0.

Under either conceptualization, the Bayes factor has an

appealing and direct interpretation as an odds ratio. For exam-

ple, BFA0 ¼ 2 implies that the data are twice as likely to have

occurred under HA than under H0. Jeffreys (1961) proposed a

set of verbal labels to categorize the Bayes factor according

to its evidential impact. This set of labels, presented at the bot-

tom of Table 1, facilitates scientific communication but should

only be considered an approximate descriptive articulation of

different standards of evidence (Kass & Raftery, 1995).

In general, calculating Bayes factors is more difficult than

calculating p values and effect sizes. However, psychologists

can now turn to easy-to-use Web pages to calculate the Bayes

Table 1. Evidence Categories for p Values (adapted from
Wasserman, 2004, p. 157), for Effect Sizes (as proposed by Cohen,
1988), and for Bayes Factor BFA0 (Jeffreys, 1961)

Statistic Interpretation

p value
<.001 Decisive evidence against H0

.001–.01 Substantive evidence against H0

.01–.05 Positive evidence against H0

>.05 No evidence against H0

Effect size
<0.2 Small effect size
0.2–0.5 Small to medium effect size
0.5–0.8 Medium to large effect size
0.8 Large to very large effect size

Bayes factor
>100 Decisive evidence for HA

30–100 Very strong evidence for HA

10–30 Strong evidence for HA

3–10 Substantial evidence for HA

1–3 Anecdotal evidence for HA

1 No evidence
1/3–1 Anecdotal evidence for H0

1/10–1/3 Substantial evidence for H0

1/30–1/10 Strong evidence for H0

1/100–1/30 Very strong evidence for H0

<1/100 Decisive evidence for H0

Note: For the Bayes factor categories, we replaced the label ‘‘worth no more
than a bare mention’’ with ‘‘anecdotal.’’ Also, in contrast to p values, the Bayes
factor can quantify evidence in favor of the null hypothesis.
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factor for many common experimental situations or use soft-

ware such as WinBUGS (Lunn, Thomas, Best, & Spiegelhalter,

2000; Wetzels, Lee, & Wagenmakers, 2010; Wetzels et al.,

2009).2 In this article, we use the Bayes factor calculation

described in Rouder et al. (2009). Rouder et al.’s development

is suitable for one-sample and two-sample designs, and the

only necessary input is the t value and sample size.

The Bayes factor that we report in this article is the result of

a default Bayesian t test (for details, see Rouder et al., 2009).

The test is default because it applies regardless of the phenom-

enon under study: For every experiment, one uses the same

prior distribution on effect size for the alternative hypothesis,

the Cauchy (0,1) distribution. This prior distribution has statis-

tical advantages that make it an appropriate default choice (for

example, it has excellent theoretical properties in the limit,

N ! 1 and t ! 1; for details, see Liang, Paulo, Molina,

Clyde, & Berger, 2008).

The default test is easy to use and avoids informed specifi-

cation of prior distributions that other researchers may contest.

Conversely, one may argue that the informed specification of

priors is the appropriate way to take problem-specific prior

knowledge into account. Bayesian statisticians are divided over

the relative merits of default versus informed specifications of

prior distributions (Press, Chib, Clyde, Woodworth, &

Zaslavsky, 2003). In our opinion, the default test provides an

excellent starting point of analysis, one that may later be sup-

plemented with a detailed problem-specific analysis (see

Dienes, 2008, 2011, this issue; Kruschke, 2010a, 2010b,

2011, this issue, for additional discussion of informed priors).

In our concrete example, the resulting Bayes factor for

t ¼ 2.09 and a sample size of 20 observations is BFA0 ¼ 1.56.

Accordingly, the data are 1.56 times more likely to have occurred

under the alternative hypothesis than under the null hypothesis.

This Bayes factor falls into the category ‘‘anecdotal.’’ In other

words, this Bayes factor indicates that although the alternative

hypothesis is slightly favored, we do not have sufficiently strong

evidence from the data to reject or accept either hypothesis.

Comparing p Values, Effect Sizes, and
Bayes Factors

For our concrete example, the three measures of evidence are

not in agreement. The p value was on the cusp between the

categories ‘‘no evidence against H0’’ and ‘‘positive evidence

against H0,’’ the effect size indicates a large to very large effect

size, and the Bayes factor indicates that the data support the

null hypothesis almost as much as they support the alternative

hypothesis. If this example is not an isolated one, and the mea-

sures differ in many psychological applications, then it is

important to understand the nature of those differences.

To address this question, we studied all of the empirical results

evaluated by a t test in the 2007 volumes of PBR and JEP:LMC.

This sample was composed of 855 t tests from 252 articles. These

articles covered 2,394 journal pages and addressed many topics

that are important in modern experimental psychology. Our sam-

ple suggests, on average, that an article published in PBR and

JEP:LMC contains about 3.4 t tests, which amounts to one t test

for every 2.8 pages. For simplicity, we did not include t tests that

resulted from multiple comparisons in analysis of variance

designs (for a Bayesian perspective on multiple comparisons, see

Scott and Berger, 2006). Even though our t tests are sampled from

the field of experimental and cognitive psychology, we expect our

findings to generalize to many other subfields of psychology, as

long as the studies in these subfields use the same level of statis-

tical significance, approximately the same number of

participants, and approximately the same number of trials per par-

ticipant (Howard et al., 2000).

In the next sections, we describe the empirical relation

between the three measures of evidence, starting with the rela-

tion between effect sizes and p values.

Comparing effect sizes and p values

The relationship between the obtained p values and effect sizes is

shown as a scatter plot in Figure 1. Each point corresponds to

one of the 855 comparisons. Different panels are introduced to

distinguish the different evidence categories, as given in Table 1.

Figure 1 suggests that p values and effect sizes capture

roughly the same information in the data. Large effect sizes

tend to correspond to low p values, and small effect sizes tend

to correspond to large p values. The two measures, however,

are far from identical. For instance, a p value of .01 can corre-

spond to effect sizes ranging from about 0.2 to 1, and an effect

size near 0.5 can correspond to p values ranging from about

Fig. 1. The relationship between effect size and p values. Points
denote comparisons (855 in total). Points denoted by circles
indicate relative consistency between the effect size and p value,
whereas those denoted by triangles indicate gross inconsistencies.
The scale of the axes is based on the decision categories, as given in
Table 1.
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.001 to .05. The triangular points in the top-right panel of

Figure 1 highlight gross inconsistencies. These eight studies

have a large effect size, above 0.8, but their p values do not

indicate evidence against the null hypothesis. A closer exami-

nation revealed that these studies had p values very close to .05

and were comprised of small sample sizes.

Comparing effect sizes and Bayes factors

The relationship between the obtained Bayes factors and effect

sizes is shown in Figure 2. Much as with the comparison of

p values with effect sizes, it seems clear that the default Bayes

factor and effect size generally agree, though not exactly.

No striking inconsistencies are apparent: No study with an

effect size greater than 0.8 coincides with a Bayes factor below

1/3, nor does a study with very low effect size below 0.2 coincide

with a Bayes factor above 3. The two measures, however, are not

identical. They differ in the assessment of strength of evidence.

Effect sizes above 0.8 range all the way from anecdotal to

decisive evidence in terms of the Bayes factor. Also note that

small to medium effect sizes (i.e., those between 0.2 and 0.5)

can correspond to Bayes factor evidence in favor of either the

alternative or the null hypothesis.

This last observation supports the premise that Bayes factors

may quantify support for the null hypothesis. Figure 2 shows

that about one-third of all studies produced evidence in favor

of the null hypothesis. In about half of these studies favoring

the null, the evidence is substantial. Because of the file-drawer

problem (i.e., only significant effects tend to get published), this

is an underestimate of the true number of null findings and their

Bayes factor support.

Comparing p values and Bayes factors

The relationship between the obtained Bayes factors and

p values is shown in Figure 3, again using interpretative panels.

It is clear that default Bayes factors and p values largely covary

with each other. Low Bayes factors correspond to high p values,

and high Bayes factors correspond to low p values, a relationship

that is much more exact than for our previous two comparisons.

The main difference between default Bayes factors and p values

is one of calibration; p values accord more evidence against the

null than do Bayes factors. Consider the p values between .01 and

.05, values that correspond to ‘‘positive evidence’’ and that usu-

ally pass the bar for publishing in academia. According to the

default Bayes factor, 70% of these experimental effects convey

evidence in favor of the alternative hypothesis that is only

‘‘anecdotal.’’ This difference in the assessment of the strength

of evidence is dramatic and consequential.

Conclusion

We compared p values, effect sizes, and default Bayes factors

as measures of statistical evidence in empirical psychological

research. Our comparison was based on a total of 855 different

t statistics from all published articles in two major empirical

journals in 2007. In virtually all studies, the three different

measures of evidence are broadly consistent: Small p values

correspond to large effect sizes and large Bayes factors in favor

of the alternative hypothesis. Despite the fact that the measures

of evidence reach the same conclusion about what hypothesis is

best supported by the data, however, the measures differ with

respect to the strength of that support. In particular, we noted

Fig. 3. The relationship between Bayes factor and p value. Points
denote comparisons (855 in total). The scale of the axes is based
on the decision categories, as given in Table 1.

Fig. 2. The relationship between Bayes factor and effect size. Points
denote comparisons (855 in total). The scale of the axes is based on
the decision categories, as given in Table 1.
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that p values between .01 and .05 often correspond to what, in

Bayesian terms, is only anecdotal evidence in favor of the alter-

native hypothesis. The practical ramifications of this are

considerable.

Practical ramifications

Our results showed that when the p value falls in the interval

from .01 to .05, there is a 70% chance that the default Bayes

factor indicates the evidence for the alternative hypothesis to

be only anecdotal or ‘‘worth no more than a bare mention’’; this

means that the data are no more than three times more likely

under the alternative hypothesis than they are under the null

hypothesis. Hence, for the studies under consideration here, it

seems that a p-value criterion more conservative than .05 is

appropriate. Alternatively, researchers could avoid computing

a p value altogether and instead compute the Bayes factor. Both

methods help prevent researchers from overestimating the

strength of their findings and help keep the field from incorpor-

ating ambiguous findings as if these were real and reliable

(Ioannidis, 2005).

As a practical illustration, consider a series of recent experi-

ments on precognition (Bem, 2011). In nine experiments with

over 1,000 participants, Bem intended to show that precogni-

tion exists, that is, that people can foresee the future. And

indeed, eight out of nine experiments yielded a significant

result. However, most p values fell in the ambiguous range

of .01 to .05, and across all nine experiments, a Bayes factor

analysis indicates about as much evidence for the alternative

hypothesis as against it (Kruschke, 2011; Wagenmakers,

Wetzels, Borsboom, & van der Maas, 2011). We believe that

this situation typifies part of what could be improved in

psychological research today. It is simply too easy to obtain

a p value below .05 and to subsequently publish the result.

When researchers publish ambiguous results as if they were

real and reliable, this damages the field as a whole: Time,

effort, and money will be invested to replicate the phenom-

enon, and when replication fails, the burden of proof is almost

always on the part of the researcher who, after all, failed to

replicate a phenomenon that was demonstrated to be present

(with a p value between .01 and .05).

Thus, our empirical comparison shows that the academic

criterion of .05 is too liberal. Note that this problem would not

be solved by opting for a stricter significance level, such as .01.

It is well known that the p value decreases as the sample size, n,

increases. Hence, if psychologists switch to a significance level

of .01 but inevitably increase their sample sizes to compensate

for the stricter statistical threshold, then the phenomenon of

anecdotal evidence will start to plague p values even when

these p values are lower than .01. Therefore, we make a case

for Bayesian statistics in the next section.

A case for Bayesian statistics

We have compared the conclusions from the different measures

of evidence. It is easy to make a case for Bayesian statistical

inference in general, based on arguments already well

documented in statistics and psychology (e.g., Dienes, 2008;

Jaynes, 2003; Kruschke, 2010a, 2010c; Lee & Wagenmakers,

2005; Lindley, 1972; Wagenmakers, 2007). We briefly

mention three arguments here.

First, unlike null hypothesis testing, Bayesian inference

does not violate basic principles of rational statistical decision

making, such as the stopping rule principle or the likelihood

principle (Berger & Delampady, 1987; Berger & Wolpert,

1988; Dienes, 2011). This means that the results of Bayesian

inference do not depend on the intention with which the data

were collected. As stated by Edwards et al. (1963, p. 193), ‘‘the

rules governing when data collection stops are irrelevant to

data interpretation. It is entirely appropriate to collect data until

a point has been proven or disproven, or until the data collector

runs out of time, money, or patience.’’

Second, Bayesian inference takes model complexity into

account in a rational way. Specifically, the Bayes factor has the

attraction of not assigning a special status to the null hypothesis

and so makes it theoretically possible to measure evidence in

favor of the null (e.g., Dennis et al., 2008; Gallistel, 2009; Kass

& Raftery, 1995; Rouder et al., 2009).

Third, we believe that Bayesian inference provides the kind

of answers that researchers care about. In our experience,

researchers are usually not that interested in the probability

of encountering data at least as extreme as those that were

observed, given that the null hypothesis is true and the sample

was generated according to a specific intended procedure.

Instead, most researchers want to know what they have learned

from the data about the relative plausibility of the hypotheses

under consideration. This is exactly what is quantified by the

Bayes factor.

These advantages notwithstanding, the Bayes factor is not a

measure of the mere size of an effect. Hence, the measure of

effect size confers additional information, particularly when

small numbers of participants or trials are involved. So, espe-

cially for these sorts of studies, there is an argument for report-

ing both a Bayes factor and an effect size. We note that, from a

Bayesian perspective, the effect size can naturally be conceived

as (a summary statistic of) the posterior distribution of a para-

meter representing the effect, under an uninformative prior dis-

tribution. In this sense, a standard Bayesian combination of

parameter estimation and model selection could encompass all

of the useful measures of evidence we observed (for an exam-

ple of how Bayes factor estimation can be incorporated in a

Bayesian estimation framework, see, for instance, Kruschke,

2011).

Our final thought is that reasons for adopting a Bayesian

approach now are amplified by the promise of using an

extended Bayesian approach in the future. In particular, we

think the hierarchical Bayesian approach, which is standard

in statistics (e.g., Gelman & Hill, 2007) and is becoming more

common in psychology (e.g. Kruschke, 2010b, 2010c; Lee, in

press; Rouder & Lu, 2005), could fundamentally change how

psychologists identify effects. Hierarchical Bayesian analysis

can be a valuable tool both for meta-analyses and for the
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analysis of a single study. In the meta-analytical context,

multiple studies can be integrated, so that what is inferred about

the existence of effects and their magnitude is informed, in a

coherent and quantitative way, by a domain of experiments.

In the context of a single experiment, a hierarchical analysis

can be used to take variability across participants or items into

account.

In sum, our empirical comparison of 855 t tests shows that

three often-used measures of evidence—p values, effect sizes,

and Bayes factors—almost always agree about what hypothesis

is better supported by the data. However, the measures often

disagree about the strength of this support: for those data sets

with p values in between .01 and .05, about 70% are associated

with a Bayes factor that indicates the evidence to be only anec-

dotal or ‘‘worth no more than a bare mention’’ (Jeffreys, 1961).

This analysis suggests that many results that have been pub-

lished in the literature are not established as strongly as one

would like.
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Notes

1. The findings suggest that Mussweiler (2006) conducted a one-

sided t test. In the remainder of this article, we conduct two-

sided t tests.

2. A Web page for computing a Bayes factor online is http://

pcl.missouri.edu/bayesfactor, and a Web page to download a

tutorial and a flexible R/WinBUGS function to calculate the Bayes

factor can be found at http://www.ruudwetzels.com.
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