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Abstract
Psychological data are often clustered within organizational units, which violates the independence assumption
in standard regression models. Clustered errors, multilevel models, and fixed-effects models all address this
issue, but in different ways. Disciplinary preferences for approaching clustered data are strong, which can restrict
questions researchers ask because certain approaches are better equipped to handle particular types of questions.
Resources comparing approaches to facilitate broader understanding of clustered data approaches exist for econ-
omists, political scientists, and biostatisticians. These existing resources use concepts and terminology consis-
tent with statistical training in other disciplines, so this article provides a resource using language and principles
familiar to psychologists. The article starts by walking through the origin and importance of the independence
assumption to motivate the problem and emergence of different solutions in different fields. Then, information
on clustered errors, multilevel models, and fixed-effect models is provided, including (a) how each approach
addresses independence violations, (b) research questions ideally suited for each approach, and (c) example
analyses highlighting advantages and disadvantages. The article then discusses how these approaches are not
mutually exclusive but instead can be blended together to create tailor-made models that flexibly accommodate
idiosyncrasies in research questions and are robust to nuances of a particular data set. The broader theme is that
there is no one-size-fits-all approach to clustered data. The research question—not disciplinary preferences—
should inform the statistical approach. Wider appreciation of the landscape of clustered data approaches can
expand the questions researchers ask and improve the theoretical foundation of statistical models.

Translational Abstract
It is common for behavioral data to be structured such that people are members of some larger organizational
unit (e.g., schools, companies, hospitals), which violates assumptions of basic statistical methods and can
affect the accuracy of conclusions drawn from statistical models. A few advanced statistical methods have
been developed to address this issue, but different academic disciplines have strong preferences for which
method is commonly used in research studies. That is, even though the underlying nature of the problem is
the same in different disciplines, the approach taken by economists tends to look different from a medical
researcher or epidemiologist which tends to be different from a psychologist or educational researcher. This
article starts by walking through the fundamental statistical problem that organizationally clustered data struc-
tures present and how different advanced statistical methods work to address the problem in different ways.
Specifically, the article focuses on how each method can have advantages and disadvantages for answering
certain types of questions through statistical analysis, which contributes to the disparity in preferences
among different disciplines because different types of questions are asked in different disciplines. However,
as the article discusses, aspects of these three separate methods can be integrated to engineer statistical models
that combine advantages of multiple methods simultaneously within a single model. The general theme of the
article is that scientific research disciplines tend to be insular but that much can be gained from looking outward
to other disciplines that may approach the same problem from a unique perspective.

Keywords: hierarchical linear model, mixed effect model, linear mixed model, cluster robust errors,
sandwich estimator
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Clustered data are typical in psychology with common examples
being students clustered within schools, people clustered within neigh-
borhoods, patients clustered within treatment centers, or employees
clustered within teams (e.g., Hox et al., 2017; Raudenbush & Bryk,

2002). Clustered data violate independence assumptions made by tra-
ditional methods within the family of generalized linear models (e.g.,
regression and analysis of variance [ANOVA]), and specialized meth-
ods are required to accommodate clustered data. Multilevel models
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have historically been the most frequent approach in psychology to
account for unique aspects of clustered data (e.g., Bauer & Sterba,
2011; Huang, 2016), although increases in multidisciplinary research
have increased exposure to methods popular in other fields.
Alternatives to multilevel models like clustered errors or fixed-effect

models were developed outside of psychology, so many existing
resources for these approaches appear in resources targeting economists
(Cameron & Miller, 2015; Cameron et al., 2008; Primo et al., 2007),
political scientists (A. Bell & Jones, 2015; A. Bell et al., 2019; Clark
& Linzer, 2015), or biostatisticians (Dieleman & Templin, 2014;
Gardiner et al., 2009; Hubbard et al., 2010). Treatments targeting psy-
chologists have emerged (Huang, 2016, 2018; McNeish et al., 2017;
McNeish & Kelley, 2019), although these resources tend to serve as
introductions to each method rather than addressing broader practical
questions of how to decide among different methods based on the
research question of interest.
This article therefore has two primary goals. The first is to provide

researchers in psychology and adjacent areas with a practical guide on
how different methods for clustered data map onto different research
interests. The intention is to minimize reliance on equations and math-
ematical exposition given that technical comparative treatments exist
(e.g., Gardiner et al., 2009). Where technical detail is provided, it is
intended to be supplemental so that broader conceptual ideas remain
comprehensible. The second goal is to show how these three methods
comprise a broader framework for modeling clustered data and how
aspects of different methods can be blended to create more flexible,
robust, and comprehensive models that directly and efficiently address
the researchers’ specific questions. To keep the manuscript stream-
lined, the focus is primarily on clustering due to shared organizational
membership, but special considerations for longitudinal data and
complex data structures (e.g., three-level or cross-classified hierar-
chies) are included at the end of the article.
To outline the structure of themanuscript, the origin of the indepen-

dence assumption in linear regression is reviewed followed by a dis-
cussion of how clustered data violate the independence assumption
and the associated statistical ramifications. Three different approaches
for clustered data that address independence assumption violations are
discussed: clustered errors (a.k.a. cluster robust errors or sandwich
estimators), multilevel modeling (a.k.a. mixed-effect models, random
effect models, hierarchical linear models), and fixed-effect models.
Sections on eachmodel discuss (a) how the model addresses indepen-
dence violations, (b) what types of research questions are best
addressed by the method, (c) an example empirical analysis address-
ing a relevant hypothetical research question, and (d) a brief overview
of advanced topics to consider with each method. Subsequently, strat-
egies for combining aspects of these threemethods into onemodel are
discussed to create models that are more robust and tailor-made to suit
the needs of the data structure and the research questions.

Origin of Regression Assumptions

Consider a standard linear regression for a single continuous out-
come

y
Outcome = X

Predictors
× b

RegressionCoefficients
+ e

Errors
, (1)

where y is a vector of the outcome variable (each row is the outcome
for a different person),X is a matrix of predictor variables (each row is
a person, each column is a predictor variable), β is a vector of

regression coefficients, and e is a vector of errors representing the dif-
ference between observed (y) and predicted (ŷ) values. There are three
assumptions associated with a standard linear regression model: (a)
normality of the errors, (b) independence of the errors, and (c) homo-
skedasticity of the errors. These three assumptions can be written con-
cisely as e �i.i.dN(0, s2) where “i.i.d” stands for “independently and
identically distributed” and σ2 is the variance of the error distribution.

Note that all three of these assumptions concern the error term. An
underappreciated fact among psychologists is that these assumptions
are only required to obtain accurate standard errors and to make infer-
ences about regression coefficients (e.g., testing whether the popula-
tion value equals 0). They are not required to estimate the regression
coefficients accurately.

Specifically, using ordinary least squares, regression coefficients
that minimize the vertical distance between data points and the
regression line are estimated by b̂ = (X′X)−1X′y. The mechanics
of this equation are less important than the fact that the errors (e)
are not present; only the matrix of predictors (X) and the vector of
the outcome variable (y) are needed to estimate the regression coef-
ficients. Normality, homoskedasticity, and independence are not
required to if inference or hypothesis testing are not of interest.

Assumptions are necessary for computing standard errors due to an
incongruence with what the standard errors are trying to quantify and
how studies are typically conducted. To explain, imagine an example
where the goal is to predict test scores from SES. If a researcher con-
ducted their study one time and fit a linear regression to their data, they
would get a single coefficient for the effect of SES on test scores.
Now, imagine that they collect test score and SES values from a
new random sample from the same population and fit the same linear
regression model to the new data. The regression coefficient estimate
for SES may now be different because there is sampling variability
due to imprecision from using a sample of the broader population.
Finally, consider that this researcher is independently wealthy or
has generous grant funding and that they can conduct their study on
100 different random samples from the target population, yielding
100 different estimated values for the SES effect. Hypothetical visual
representations of these scenarios are shown in Figure 1a.

With coefficient estimates from many samples, it is possible to
form a sampling distribution of estimated regression coefficients
(as in the bottom panel of Figure 1a). To evaluate variability of
the coefficient estimates across samples, the descriptive variance
or standard deviation of all these coefficients could be taken to quan-
tify the precision of coefficient estimates between samples. To make
inferences about the coefficients, the probability of obtaining a par-
ticular estimate from a population whose true value were 0 based on
this sampling distribution could be calculated (e.g., is 0 a plausible
or unrealistic population value?).

No part of this process requires assumptions about the errors. If
the study could be repeatedly conducted, the sampling variability
could be quantified using only the repeatedly estimated regression
coefficients across different samples, which rely solely on informa-
tion from the data (X and y) without any need to assume a particular
distribution for or independence of the errors.

However, in practice, most analyses and inferences are conducted
on data from a single sample, so the situation most closely resembles
the upper left panel of Figure 1a. The challenge is to estimate sam-
pling variability from a single value that has no descriptive variance.
That is, it is hard to make inferences about whether a coefficient is
plausibly 0 without an idea of the precision of the estimate.
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This is where assumptions enter the picture. By assuming normal-
ity, homoskedasticity, and independence (of the errors), it is possible
to construct a theoretical sampling distribution around a single coef-
ficient estimate. This is shown in Figure 1b where the dashed line is
the theoretical sampling distribution under particular assumptions.
The standard deviation of the theoretical sampling distribution—
referred to as the standard error—is used as an estimate of the sam-
pling standard deviation. In other words, the standard error tries to
capture what the standard deviation of the sampling distribution
would have looked like if it were possible to repeatedly conduct the
study. Essentially, the tradeoff is that assumptions are made to obtain
information that could otherwise only be obtained by (cost-
prohibitively) conducting the study repeatedly with many different
random samples.

Issues With Clustered Data

Statistical Issues With Clustered Data

The independence assumption implies that each observation
brings 100% unique information to the analysis, which is used (in
part) to determine the width of the theoretical sampling distribution
(the dashed distribution in Figure 1b). When data are clustered such

that observations have some shared context through membership in
the same organizational unit like a school or work team, indepen-
dence can be a tenuous assumption. For example, test scores for stu-
dents who attend the same school likely do not contain 100% unique
information because students share experiences that influence test
scores like teachers, curriculums, and peers. Observations in clus-
tered data therefore contain a mix of information about the individual
(the student) and the shared context (the school).

In clustered data, information about the shared context is common
among all members of the organizational unit. However, assuming
independence treats all information as unique such that any shared
information is double-counted when computing standard errors,
which makes the data appear to have more information than they
actually contain. When computing standard errors, the precision of
the theoretical sampling distribution will therefore be inaccurate.
Violating independence typically overestimates precision such that
standard errors are too small (i.e., the distribution in Figure 1b is
too narrow). Wald tests used in inference divide a coefficient esti-
mate by its standard error. So, if standard errors are too small, test
statistics like t or Z will be too large and p-values will be too
small. As a result, Type-I error rates are inflated and inference errors
occur more often than the prescribed rate.

Figure 1
Regression Coefficient Sampling Variability via Repeated Sampling or a Single Sample
With Assumptions

(a)

(b)

Note. (a) Hypothetical histogram of estimated regression coefficient for one sample (upper left),
two samples (upper right), and many samples (bottom). (b) Estimated coefficient from a single sample
with the theoretical distribution derived conditional on assumptions shown as a dashed line.
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Diagnosing Independence Assumption Violations

The intraclass correlation (ICC) is a measure between 0 and 1 that
quantifies what proportion of the outcome is attributable to the
shared context, which helps quantify the extent of the double counting
(0 means no information is double-counted and observations are inde-
pendent; 1 means that all information is double-counted and observa-
tions are entirely dependent). Figure 2 shows a graphical depiction of
this idea for two individuals within the same cluster. Each circle rep-
resents sources of variance in the outcome variable for one person;
each person brings some unique individual information (the white
space inside each circle) but there is also some shared contextual infor-
mation represented by the grey shaded area. As an example, if the out-
come is a test score, there are some individual sources that contribute
to scores (e.g., study habits, motivation to learn), but there are also
school sources (e.g., teacher quality, course offerings) such that scores
from students in the same school will be related to some degree. The
ICC aims to determine the proportion occupied by the grey area in
Figure 2.
The ICC is often interpreted as a test of whether there will be stat-

istical issues if clustering were ignored (i.e., if standard errors will be
too small). However, the proportion of variance attributable to a
shared context is distinct from whether standard errors will be accu-
rate. The square root of the design effect (DEFT; Kish, 1965) is more
appropriate for evaluating if clustering will affect standard errors.
The design effect (DEFF; Hox et al., 2017, p. 5) is a ratio of the sam-
pling variability when treating data as clustered versus treating data
as independent. The DEFT takes the square root of this ratio to place
the metric onto the same metric as the standard error, which can be
more interpretable (Kish, 1995, p. 56). The DEFT is therefore a mea-
sure of howmuch larger standard errors will be when data are treated
as clustered compared to treating the data as independent.
Specifically, DEFT = ���������������������

1+ (m− 1)× ICC
√

where m is the aver-
age number of observations in a cluster. For instance, a DEFT of 2
suggests that standard errors would be twice as large if clustering
were acknowledged than if independence were assumed (i.e., the
DEFT is a multiplicative term). If the total sample size is divided
by the DEFT squared (i.e.,N/DEFT2), the result is the effective sample
size, which is the number of “independent-equivalent” observations

contained within a clustered sample (Kish, 1965). So a data set
where N= 200 and DEFT= 2 contains the same amount of unique
information as a data set with (200/22)= 50 independent observa-
tions. A historical threshold for when clustering becomes problematic
is DEFT .

��
2

√
(Muthen & Satorra, 1995), although recent studies

find that informative DEFT values can depend on several characteris-
tics (Lai & Kwok, 2015).

The DEFT is related to the ICC but it also incorporates cluster
size. The distinction is that the ICC is quantifying the average shared
information (the average grey area in a Venn diagram) whereas the
DEFT is quantifying the extent of double counting shared informa-
tion (the sum of all grey areas in a Venn diagram). A small ICC does
not necessarily mean that clustering is ignorable because double
counting may add up and become problematic with large clusters.

This process is depicted in Figures 3 and 4. Double counting
many small overlapping Venn diagram sections (as in Figure 3) is
just as problematic for standard errors and p-values as double count-
ing a few large overlapping Venn diagram sections (as in Figure 4)
because the total grey area is equal in either case. To provide numer-
ical information for the scenario in Figures 3 and 4, consider that
data in Figure 3 have 60 observations per cluster and an ICC of
.03 whereas data in Figure 4 have eight observations per cluster
and an ICC of .25. The DEFT of both data sets is the same; the
Figure 3 DEFT is

����������������������
1+ (60− 1)× 0.03

√ = 1.66 and the Figure 4
DEFT is

���������������������
1+ (8− 1)× 0.25

√ = 1.66, meaning that the standard
errors are equally affected by independence violations despite diver-
gent ICC values.

Substantive Issues With Clustered Data

The previous section emphasized statistical issues with standard
errors and p-values when modeling clustered data, but there are
also substantive issues to consider. In independent data, the associ-
ation between a predictor and an outcome is a single value such that
the effect is the same for all people. In clustered data, there may be
heterogeneity in the association between predictors and outcomes
such that the effect has a different magnitude in different clusters.
That is, effects may be better represented by a distribution rather
than a single value.

For instance, if studying the effect of identifying as queer on self-
esteem in high school students, the magnitude of the association may
be different in different schools given that the characteristics of the
school may differ in ways that affect this association (e.g., whether
the school is religious or secular, the political leanings of where
the school is located). Some methods for clustered data attempt to
quantify heterogeneity in associations between variables because
contextual differences may be seen as a moderating effect central
to understanding behavioral processes rather than a statistical incon-
venience that distorts standard errors and p-values.

The ICC is the best metric for identifying potential heterogeneity
because it quantifies the proportion of variance in the outcome attrib-
utable to shared context. If the proportion is sufficiently high (.05 is a
common threshold; Hox, 1998), explicitly modeling heterogeneity in
associations between the outcome and predictors may be worthwhile.
If the proportion is small (e.g., below .05), it may not be worth build-
ing a more complex model to explain a small source of variability.
Nonetheless, insufficient shared contextual variability (measured by
the ICC) is distinct from whether standard errors are accurately gaug-
ing sampling variability (measured by the DEFT).

Figure 2
Conceptual Diagram of Shared Contextual Sources
of Variability That the Intraclass Correlation Is
Attempting to Quantify

Note. The grey area represents shared contextual vari-
ance, and the white areas represent individual variance.
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Additionally, the definition of “one-unit difference” in the inter-
pretation of regression coefficients may become ambiguous in clus-
tered data. Consider again the context of predicting test scores from
SES. A “one-unit difference” could mean a student’s SES increases,
the school’s SES increases, or some mix of the student and school
SES increasing that sums to one-unit overall. Models can be speci-
fied in ways to produce effects that clarify the definition of “one-unit
difference.”More formal definitions for these types of disaggregated
effects are (a) thewithin effect that quantifies the expected change in
the outcome when an individual’s value of a predictor differs but the
context stays the same, (b) the contextual or compositional effect that
quantifies the expected change in the outcome if an individual’s
value were the same but they were in a different context, or (c) the
between effect that quantifies the expected change in the outcome
if the cluster mean differed.

Overview of Three Methods for Clustered Data

The remainder of this article discusses three approaches—clustered
errors, multilevel models, and fixed-effect models—to modeling
clustered data and the different ways in which they accommodate

independence assumption violations. Specific details are discussed
in a dedicated section for each method, which outline the basic
idea of the method and a description of research questions for
which the method is designed. Subsequent sections include example
analyses demonstrating how particular research questions can be
addressed with each method and more advanced topics to be consid-
ered with each method.

Table 1 provides a broad comparative overview of the three meth-
ods. Figure 5 shows the conceptual idea of each method using the
Venn diagram idea in Figure 2 (each panel will be explained in
the corresponding section). As a short, one-sentence overview of
the idea of each method,

1. Clustered errors: Clustering impacts the statistical properties of
inferences, so a correction is applied to produce standard errors
(and p-values) that are robust to independence violations

2. Multilevel models: Clustering provides richer information
that can be used to build a more complex model for the inter-
play between individuals and their environment in addition
to producing standard errors and p-values that are robust to
independence violations

3. Fixed-effect models: Clustering results in an interplay
between individuals and their environment that impacts
the ability to meaningfully compare individuals from differ-
ent clusters, so contextual and environmental influences are
statistically removed so they do not contaminate estimates of
individual-level effects

Clustered Errors

How It Works

Clustered errors are not a multilevel model but are a technique
to make single-level models robust to independence assumption
violations through a statistical correction to the standard errors.
Essentially, the width of the theoretical sampling distribution
(the dashed line in Figure 1b) is altered to incorporate double count-
ing of contextual information (e.g., the grey area in Figures 2–4)
and to better reflect the effective sample size. Clustered errors

Figure 3
Hypothetical Depiction of a Cluster With 60 People Where Only 3% of the Outcome Is Attributable to Shared Contextual Sources

Note. The total amount of grey shading is identical to Figure 4 but spread over more people. This figure is an approximation and shows shared context between
pairs of observations. In reality, the context would be shared amongst all members of the cluster, but this was harder to legibly depict visually, so the figure is a
simplification.

Figure 4
Hypothetical Depiction of a Cluster With
Eight People Where 25% of the Outcome Is
Attributable to Shared Contextual Sources

Note. The total amount of grey shading is identical
to Figure 3, but spread over fewer people.
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approximate the sampling distribution of the regression coefficients
if the study were repeatedly done with differently cluster sampled
data sets rather than independently sampled data sets.
Typically, standard errors become larger to reflect decreased

imprecision when each observation does not contain 100% unique
information (standard errors may decrease in the rare instance

of negative ICCs, though). Test statistics (e.g., t or Z ) for each
parameter are updated with corrected standard errors, which yield
revised p-values for inference. Importantly, clustered errors do not
explicitly model or control for any of shared contextual information
and the point estimates and interpretation of the regression coeffi-
cients are unchanged. Clustered errors address statistical issues
arising from clustering (e.g., inflated Type-I error rates) but do
not necessarily address substantive issues related to clustering
(e.g., the context affects the relation between a predictor and the
outcome).

The left panel of Figure 5 shows a conceptual diagram of the idea of
clustered errors. The outcome (represented by the circle) contains var-
iability attributable to individual sources (in white) and contextual
sources (in grey), but predictors do not differentiate between the
white and grey areas and a single error term contains unexplained var-
iance from all sources. Standard errors adjust for the presence of the
grey area, but there are no steps to explicitly separate the white and
grey areas.

Clustered errors operate in a single-level regression framework,
so the interpretation is no different than any other single-level
linear regression model. The coefficients still correspond to the
expected change in the outcome for a one-unit increase in the pre-
dictor. Also similar to single-level regression, the coefficients are
completely pooled, which means that the model does not differentiate
within-cluster variance from between-cluster variance and the regres-
sion coefficients are estimated using data points from all clusters (e.g.,
if clusters are different sizes, bigger clusters will have more influence
on the coefficients). Straightforward methods to address model fit like
R2 remain calculable and formulas for effect sizes are unchanged. The
only aspect of the model that changes is the method bywhich the stan-
dard errors are computed to address independence assumption
violations.

More Technical Explanation

Imagine a small data set with six observations and two clusters
such that each cluster has three observations. If a regression model

Table 1
Comparative Overview of Mechanism and Goals for Clustered Errors, Multilevel Models, and Fixed-Effect Models

Attribute Clustered errors Multilevel models Fixed-effect models

Accommodating clustering Corrects standard errors to reflect loss
of information when data are
clustered rather than independent

Partitions the variance by level and builds a
model to explain sources of dependence
among observations

Adds cluster affiliation dummies to remove
all contextual variance so that errors are
conditionally independent

Main interest Clustering is a nuisance for which
to correct so that standard errors,
inferences, and p-values are
accurate

Clustering permits quantifying and
explaining heterogeneity in associations
between predictors and the outcome

Controlling for shared context so effects of
individual-level variables are free of
contextual influences

Venn diagram description One model for combined area that
corrects for the presence of grey
area

Separates the white area and grey areas and
builds a submodel for each

Removes the grey area entirely and builds a
model for the white area

Pooling Complete pooling; effects represent
the average across all clusters

Partial pooling; cluster-specific effects are
blended with the average across all
clusters to improve generalizability to
broader population

No pooling; estimates are cluster-specific and
not influenced by the average across
clusters. Inference not intended beyond
clusters in sample

Coefficient heterogeneity Not directly supported Random coefficients with an assumed
distribution

Interactions with cluster affiliation dummies
that are directly estimated

Sample size requirement 40 clusters, without corrections 30 clusters, without corrections No limit
Distributional assumptions Only for single error term Error term at each level and each

coefficient that is heterogeneous
Only for single error term

Figure 5
Conceptual Diagrams of Different Clustering Methods

Note. The left panel shows clustered errors, the right panel shows fixed-
effect models, and the bottom panel shows multilevel models. White
areas indicate variance attribute to individual characteristics, and grey
areas indicate variance attributable to shared contextual characteristics.
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is fit to data from these six people, each person would have their own
error term such that the error vector e would have a length of 6. The
covariance matrix of the errors (denoted asΩ) would be 6× 6. If this
matrix were unstructured, it would look like

Cov(e) = V =

s2
1

s21 s2
2

s31 s32 s2
3

s41 s42 s43 s2
4

s51 s52 s53 s54 s2
5

s61 s62 s63 s64 s65 s2
6

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦
, (2)

such that each element is potentially unique. If this were feasible, there
would be no homoskedasticity assumption because the diagonal ele-
ments are unconstrained. The independence assumption would be
relaxed also because the off-diagonal terms are all estimated, allowing
for dependence among observations. Without these assumptions, the
sampling covariancematrix of the regression coefficients (fromwhich
standard errors are taken by the square root of the diagonal terms)
would be calculated as Cov(b̂) = (X′X)−1X′VX(X′X)−1. The
mechanics of this expression are less important than the fact that Ω
(the error covariance matrix) is in the middle and is central to quanti-
fying sampling variability of the regression coefficients.
Unfortunately, uniquely estimating each element ofΩ is not possible

because there are (6× 7)/2= 21 unique elements, which would exhaust
the degrees of freedom with six observations (Goldfeld & Quandt,
1965). This holds generally because N parameters can be estimated
but the number of nonredundant elements of Ω is [N× (N + 1)]/2,
which is always larger than N.
Assuming independence and homoskedasticity simplifies the

error covariance matrix considerably toV = s2Iwhere I is an iden-
tity matrix with 1s on the diagonal and 0s in the off-diagonal. This
makes the diagonal elements constant and constrains off-diagonal
elements to 0,

V =i.i.d.s2I =

s2

0 s2

0 0 s2

0 0 0 s2

0 0 0 0 s2

0 0 0 0 0 s2

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦
. (3)

When V = s2I, most of the terms in the sampling covariance
matrix expression above for Cov(b̂) drop out because multiplying
by an identity matrix is analogous by multiplying scalars by 1.
Specifically, under independence and homoskedasticity such that
V = s2I, the sampling covariance of the regression coefficients
reduces to Cov(b̂) = s2(X′X)−1, which parsimoniously captures
the entire error covariance matrix with a single estimated parameter
σ2, provided that assumptions are met. When assumptions are not
met, a dilemma emerges—the simplified matrix provides inaccu-
rate estimates of sampling variability, but the unstructured matrix
has too many parameters to estimate.
Clustered errors provide a compromise between these two extremes.

If the data are clustered such that observations are related within a clus-
ter, but observations are independent between clusters, then Ω can be
specified to be block diagonal.That is, observations in the same cluster
have nonzero off-diagonal elements (i.e., observations from the same
cluster covary due to their shared context) but observations in different
clusters have off-diagonal elements constrained to 0 (i.e., they do not

have a shared context and are therefore independent). For the hypothet-
ical example with six people where Observations 1 through 3 are in
Cluster 1 and Observations 4 through 6 are in Cluster 2, such a
block diagonal error covariance matrix would be

V =

s2
1

s21 s2
1

s31 s32 s2
1

0 0 0 s2
2

0 0 0 s54 s2
2

0 0 0 s64 s65 s2
2

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦
. (4)

If counting the number of unique elements in this matrix, readers
may note that the number of unique terms still exceeds N. To work
around this and preserve degrees of freedom, these elements are not
parameters that are directly estimated in the model (i.e., they do not
consume any degrees of freedom; White, 1980, Lemma 2, p. 820).
Instead, the values substituted into this block diagonal matrix are
determined using the descriptive covariance of the errors from a fit-
ted model assuming independence and homoskedasticity.

That is, if these assumptions are violated, errors for observations
in the same cluster will have some association. The logic is similar to
using the errors in regression diagnostic tests where the errors are
output for further analysis. Rather than estimating the association
between errors in the same cluster as part of the model (and consum-
ing degrees of freedom), the association is determined post hoc, pre-
serving degrees of freedom.

This property is why clustered errors are sometimes called
“empirical errors” because the standard error correction is based
on the empirical association between errors within the same cluster.
It is alsowhy the regression coefficients do not changewith clustered
errors. Clustering is not acknowledged during estimation and instead
only when quantifying sampling variability based on associations
among empirical errors.

Specifically, clustered errors substitute V = ∑J
j=1 êjê

′
j into the

Cov(b̂) expression where j is an index for the cluster and J is the
total number of clusters. In this formula, êj = yj − ŷj such that the
errors for observations in cluster j are equal to the observed values
in cluster j minus predicted values in cluster j. êjê

′
j is matrix short-

hand for the descriptive covariance matrix of a vector, so êjê
′
j calcu-

lates the empirical covariance among the errors in cluster j from a
model assuming independence. The summation sign at the begin-
ning dictates that this process is repeated for each cluster, which
are appended to create an overall block diagonal structure.

Also note that the empirical error covariance does not necessarily
require a constant error variance be (i.e., the diagonal of êjê

′
j is not

constrained within or between clusters), so clustered errors provide
robustness to homoskedasticity violations in addition to indepen-
dence violations. In fact, heteroskedasticity-consistent errors are
just clustered errors with all off-diagonal terms constrained to 0
rather than just off-diagonal terms for observations from different
clusters constrained to 0 (Cameron & Miller, 2015, p. 321).
Chapter A in the online supplemental materials shows a small exam-
ple to walk through details of this process.

At this point readers may ask why the block diagonal structure is
necessary and why not just apply the empirical approach to the full
matrix? The short answer is that the empirical approximation is
rough, so applying one empirical approximation for the full matrix
may not reasonably approximate Ω and may not yield accurate
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standard errors. However, applying an empirical approximation indi-
vidually to each of the J clusters in a block diagonal matrix averages
over J rough approximations (Cameron & Miller, 2015, p. 320,
p. 324). As J→∞, the roughness of any single empirical approxi-
mation is less relevant through the law of large numbers, so accurate
standard errors can be obtained. J≥ 40 is typically considered suffi-
ciently large, but small sample corrections have also been devised to
accommodate J, 40 (Fay & Graubard, 2001; Kauermann & Carroll,
2001; Mancl & DeRouen, 2001).
After clustering the errors, some ambiguity about the degrees of

freedom emerges. Regression models base degrees of freedom on
N, but that is not entirely appropriate given that the effective sample
size in clustered data is not equal to N. One conservative (and infre-
quent) approach suggests that degrees of freedom are irrelevant
because clustered errors are only accurate as J→∞, at which
point degrees of freedom have no impact. A more common method
is to base the degrees of freedom based on J− 1 or J− 2 (Cameron
&Miller, 2015; Shah et al., 1977). A second method by Donald and
Lang (2007) suggests using Jminus the number of cluster-level pre-
dictors (i.e., variables that are constant for all members of the same
cluster but that may differ for different clusters). More complex
degrees of freedom based on the characteristics of the data have
also been proposed (R. M. Bell & McCaffrey, 2002) and have
been reported to perform better than heuristic approaches like
Donald-Lang degrees of freedom with smaller sample sizes
(Huang & Li, 2022). In general, degrees of freedom with clustered
errors are an approximation and unlikely to be exact as with indepen-
dent data.

What Clustered Errors Are Designed for

Clustered errors are ideal when clustering is a nuisance and not
directly related to the research questions, such as when clustering
was an incidental part of the data collection. As one example, con-
sider a researcher who is interested in the effectiveness of a reading
intervention designed to help students improve vocabulary with
strategies for situations when they encounter a word whose meaning
they do not know. For this type of study, it may not be possible to
collect a large enough sample of students without recruiting from
multiple classrooms.
Consequently, students may incidentally be clustered within

classrooms in order to obtain a sufficient sample size. However, if
there were some hypothetical, infinitely large classroom from
which the entire sample could have been collected, the ability to
assess the effectiveness of the intervention would not have been
affected. It may still be necessary (depending on the DEFT) to
apply a statistical correction for the lack of independence between
observations within the same classroom; however, a single-level
model with corrections for independence assumption violations
may be sufficient and a more advanced model whose goal is to
parse out individual and classroom influences may not be necessary
to address the research question.
As another example, cluster sampling is sometimes used to reduce

costs or increase sampling efficiency. Cluster sampling selects clus-
ters to participate in a study and then includes all members of the
selected cluster. For instance, a behavioral intervention to help chil-
dren exercise more frequently might recruit all siblings within a fam-
ily to participate in a study (where children are clustered in families).
Or schools may be recruited to participate in an antibullying

intervention and all consenting students may be included as partici-
pants (where students are clustered within schools).

Here, clustering is a feature of the data collection strategy, but clus-
teringmay not be central to the research question. For instance, includ-
ing all siblings into a behavioral intervention promoting physical
activity may not be done because there is an inherent interest in paren-
tal or home environment characteristics affecting exercise frequency
or duration. This sampling approach may be enacted because it is
just difficult to find participants and it is more efficient to include
all children once a family consents (i.e., the burden to add a sibling
from an already participating family is lower than finding a new fam-
ily to consent). It is important to account for the clustering, but if the
clustering is incidental and not directly tied to the research questions, a
statistical correction like clustered errorsmay suffice to allow research-
ers to address their research questions using less complex methods.

Multilevel Models

How It Works

Multilevel models treat clustering as an opportunity to better
understand and delineate the distinct contributions of the individual
and the context. Multilevel models partition the variance in the out-
come into individual sources (a.k.a. within-cluster variance) and
contextual sources (a.k.a. between-cluster variance). Within-cluster
and between-cluster submodels are then built to explain these differ-
ent sources of variance, allowing a multilevel model to articulate
which source of variance a predictor explains. Multilevel models
produce correct standard errors as a byproduct, but correct standard
errors themselves are not sole focus as with clustered errors.

The bottom panel of Figure 5 expresses the idea of multilevel mod-
els as a Venn diagram. The multilevel model separates the white area
from the grey area and then builds submodels for each source of vari-
ance. The submodel for the white area features individual characteris-
tics (variables that are potentially different for each person) to explain
within-cluster variance and the submodel for the grey area features con-
textual characteristics (variables that are constant for people in the same
cluster but that can differ across people in different clusters) to explain
between-cluster variance. Each submodel has its own error term to cap-
ture unexplained variance from each respective source, meaning that
the overall model has multiple error terms to quantify unexplained var-
iance at different levels. Whereas clustered errors sought to correct for
the presence of the grey area, a multilevel model uses the grey area to
investigate the interplay of individuals and their environment to
uncover mechanisms for how contexts moderate associations.

Importantly, multilevel models do not “control for clustering” in the
sense that all contextual influences are accounted for.1 Partitioning the
variance quantifies the proportion of variance at each level with mul-
tiple error terms representing unexplained variance. To control for
contextual characteristics, multilevel models must explicitly include
predictors in the between-cluster submodel.

1 Partitioning the variance may “explain clustering” because it clarifies
how variance is allocated across levels (e.g., Rights & Sterba, 2020,
p. 588) and “control for clustering” may accurately describe that multilevel
model standard errors account for clustering. However, multilevel models
do not partial out contextual characteristics when partitioning the variance,
so a multilevel model does not “control for clustering” in the regression
sense of “control” unless relevant contextual characteristics are explicitly
included in the between-cluster submodel.
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Random Coefficients

The within-cluster submodel may feature random regression coeffi-
cients. “Random” in this context does not mean “haphazard” as in
everyday language. Instead, “random” comes from its use in probabil-
ity to mean “follows a distribution.” So “random regression coeffi-
cients” means that the regression coefficients do not have a single
value but instead have a distribution of values. Conceptually, the asso-
ciation between the predictor and the outcome is different in each clus-
ter, allowing heterogeneity in the association between the predictor and
the outcome. In other words, there is not a single regression line but
instead a unique regression line for each cluster. Researchers can
acknowledge that associations may be moderated by the context sur-
rounding each cluster and that the magnitude of the association
between the outcome and a predictor may be contextually dependent.
As an example, students may be clustered in schools and the out-

come of interest is self-esteem. A focal predictor is whether a stu-
dent identifies as queer, which is a student characteristic that varies
from person to person. The association between identifying as
queer and self-esteem may be contextually dependent such that
the magnitude (or even the direction) of the association varies
across schools (i.e., there is heterogeneity in the association
between identifying as queer and self-esteem). A multilevel
model first quantifies this heterogeneity to inform a researcher
how much the association varies across different schools.
Subsequently, the heterogeneity can be predicted by school-level
characteristics (e.g., the proportion of students identifying as
queer, whether the school is religious) to better understand how
the school context impacts or moderates the association between
identifying as queer and self-esteem (e.g., the association between
identifying as queer and self-esteem may be more negative in pri-
vate schools than in public schools). This is referred to as a cross-
level interaction because school characteristics predict or moderate
the association among individual characteristics.
Random regression coefficients require that a particular distribu-

tion be assumed. Normality is a common choice and used by default
in most statistical software (Littell et al., 2006), although other
options are possible (Zhang & Davidian, 2001). When assuming a
distribution for a coefficient across clusters, the model does not
directly estimate the coefficient in each specific cluster. Instead,
the model estimates properties of the assumed distribution. With a
normal distribution, this corresponds to the mean and variance.
The mean of this normal distribution is called the fixed effect,
which represents the average association between the predictor and
the outcome across all clusters. The variance component is the var-
iance of the distribution, which represents the heterogeneity in the
coefficient across clusters. The coefficient in a specific cluster can
be recovered with empirical Bayes predictions, but cluster-specific
coefficients are not directly featured in the model.
Assuming a distribution of coefficients across all clusters rather

than directly estimating the specific effects in each cluster has four
notable benefits.

1. The target of inference is the entire population from which
clusters were sampled rather than just the clusters that
were included in the analysis.

2. The model directly quantifies the heterogeneity in the
regression coefficients.

3. The model scales easily because estimating the mean and
variance of a distribution costs few degrees of freedom
regardless of the number of clusters in the data.

4. The cluster-specific coefficients are partially pooled, mean-
ing that they are a weighted average of the fixed effect and
the data specifically from the particular cluster (Gelman,
2006). This has advantages when some clusters are small
and generally leads to better predictions

What Multilevel Models Are Designed for

Multilevel models are ideal when clustering is purposeful and fun-
damental to the research question itself such that the research ques-
tion could not be answered if the data were not clustered. This
includes questions about how context may affect individuals or
when a primary objective is to explain heterogeneous associations
between predictors and outcomes. To multilevel models, clustering
is an asset that expands the research questions that can be explored
and provides opportunities to clarify among competing mechanisms
and investigate questions that cannot be answered from single-level
data. There is no inherent problem with using multilevel models to
produce standard errors and p-values that reflect clustering; however,
doing so fails to realize the full potential of multilevel models and
can overcomplicate analyses that could be handled more simply
with other methods.

In school research, for example, there may be questions about how
different types of teaching styles affect learning or about how differ-
ent classroom environments affect students’motivation to learn. The
classroom context in which the student finds themselves is central to
these questions and students being clustered in different classrooms
permits a multilevel model to examine (a) how much variability in
the outcome is attributable to student characteristics and teacher
characteristics, (b) if student-level characteristics have different asso-
ciations with the outcome in different classrooms or pedagogical
environments, and (c) which teacher-level characteristics might
explain heterogeneity. If data were only collected from a single
teacher, then all students would share the same context and questions
about the differential contribution of students and teachers could not
be addressed.

Disaggregated Effects

Multilevel models are well-suited to disaggregate a single predictor
to differentiate how the outcome is anticipated to change when an
individual’s value of the variable increases by one unit and when a
cluster’s value of the variable increases by one unit. Using students
clustered in classrooms as an example, it could be important to differ-
entiate among the effect of a student’s motivation increasing by one
unit (a within effect), the classroom’s average motivation increasing
by one unit (a between effect), and a student’s motivation staying
the same but the classroom’s average motivation increasing by one
unit (a contextual effect). A multilevel model can differentiate
among these effects based on how the predictors in the within-cluster
submodel are centered andwhether the cluster means of within-cluster
predictors are included as between-cluster predictors.

Uncentered predictors in the within-cluster submodel and
excluding cluster means as predictors in the between-cluster sub-
model misses opportunities to differentiate between changes in
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individual characteristics and changes in contextual characteris-
tics. That is, raw individual characteristics are partially informed
by the individual’s context, so uncentered individual-level vari-
ables contain a mix of individual and contextual information.
Centering isolates pure individual information by subtracting
contextual information contained in cluster mean. Otherwise,
coefficients may be conflated (a.k.a. blended, composite, total,
or smushed; Burstein, 1980; Hoffman, 2015; Preacher et al.,
2010; Wang & Maxwell, 2015) and yield an uninterpretable
blend of individual and contextual information (Curran &
Bauer, 2011; Enders & Tofighi, 2007; Hamaker & Grasman,
2015).

Fixed-Effect models

How It Works

Fixed-effect models partition the variance in the outcome into
different sources, similar to multilevel models. However,
fixed-effect models do not build a between-cluster submodel for
contextual sources of variance. Instead, they completely remove
influences of all possible contextual variables, regardless of
whether they were collected or appear in the data. The goal is to cre-
ate a within-cluster model that cannot be affected by the
between-cluster information. Whereas multilevel models partition
the variance to eventually build a submodel to explain different
sources variance, fixed-effect models partition the variance in
order to completely factor out all contextual sources. Multilevel
models treat contextual variance as an equally important source
deserving its own submodel, but fixed-effect models treat contex-
tual variance as a potential confound for which to control. The
within-cluster model has clear primacy in a fixed-effect model
whereas the within-cluster and between-cluster submodels have
equal status in a multilevel model.
Like clustered errors, fixed-effect models view the clustering as

unrelated to the research questions and as an aspect to merely be
accommodated. However, fixed-effect models are motivated by sub-
stantive rather than statistical issues. In clustered errors, the concern
is that the clustering will adversely affect inferences, so the emphasis
is correcting standard errors and p-values. The concern in
fixed-effect models is that individuals from different clusters will
be incomparable due to different contexts and that clustering will
distort interpretation of individual characteristics on the outcome.
Fixed-effect models therefore aim to control for all contextual char-
acteristics so that associations in a within-cluster model can be esti-
mated as if the data were independent. This is distinct from clustered
errors, which only correct the standard errors but do not alter the
regression coefficients to reflect possible differences in contextual
characteristics.
The right panel of Figure 5 shows the conceptual idea of

fixed-effect models . The model partitions the variance into indi-
vidual and contextual sources. However, fixed-effect models dis-
card the grey area from the analysis entirely after partitioning
such that the model proceeds only with within-cluster variance
associated with the white area. This is opposed to a multilevel
model where the grey area is substantively interesting and sepa-
rately modeled. Fixed-effect models also feature a single error
term that contains unexplained variance solely from individual
sources. This differs from clustered errors where the error term is
composed of unexplained variance from all sources.

To accomplish these goals, the most common approach is to cre-
ate cluster affiliation dummy variables for each cluster. For
instance, if there are 50 clusters, 50 binary variables are created
whose value equals 0 if the observation is not a member of the clus-
ter or equals 1 if the observation is a member of the cluster. The set
of all cluster affiliation dummies are then directly included in a
single-level regression model as predictors (if all are included,
the intercept must be suppressed; if the intercept is included,
then one cluster affiliation dummy is omitted as a reference cluster).
The set of cluster affiliation dummies saturates the between-cluster
submodel, essentially acting as a black box that nondescriptly
absorbs all possible contextual sources of variance. The tradeoff
is that all between-cluster variance will be explained and factored
out, but effects for specific contextual characteristic cannot be esti-
mated because it will necessarily be perfectly collinear with the
cluster affiliation dummies. That is, because the cluster affiliation
dummies explain all sources of contextual variance, any variance
explained by a specific between-cluster predictor will be
completely redundant with variance explained by the cluster affil-
iation dummies.

A fixed-effect model can be considered an analysis of covari-
ance (ANCOVA) where the cluster affiliation is a fixed categorical
factor and substantive within-cluster predictors are covariates. In
traditional ANCOVA, the categorical factor is the focus and covar-
iates are controls. In a fixed-effect model, the roles are reversed
and the categorical factor controls for clustering and the covariates
are the focus. Because fixed-effect models statistically remove
variance attributable to contextual sources, they truly “control”
for clustering in a regression sense because all contextual sources
of variance are partialed out.

The coefficients associated with each cluster affiliation variable
represent cluster-specific intercepts. This is related to—but distinct
from—the approach used in a random intercepts multilevel model.
The difference is that a multilevel model assumes a distribution
for all the intercepts whereas the fixed-effect model directly esti-
mates the intercept for each cluster, which is the origin of
“fixed-effect model” because cluster-specific intercepts are directly
estimated. This means that

1. Results from a fixed-effect model only generalize to the
clusters that were included in the data.

2. The clusters are not assumed to be randomly sampled from
the broader population of clusters.

3. There is no pooling of regression coefficients (i.e., only the
observations within each cluster contribute to the cluster-
specific intercept; the estimates are not blended with the
overall mean).

4. All sources of contextual variances for the intercept are
accounted for, regardless of whether the relevant contextual
characteristics were collected and included in the data.

Multilevel and fixed-effect model models are sometimes written
equivalently with the distinction only hinging on assumptions
about the cluster-specific intercepts.

Standard errors will accurately reflect clustering when cluster
affiliation dummies are included as predictors. To understand why,
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recall that (a) the independence assumption is about errors and (b)
errors are conditional on predictors in the model. All contextual var-
iance is explained by the cluster affiliation dummies, so the errors
will be free of contextual influences. Once the contextual variance
is factored out, the (conditional) independence assumption is upheld
because any source of covariance between errors from observations
in the same cluster has been explained by the cluster affiliation dum-
mies (assuming only one source of clustering, violations of which
are discussed later).

What Fixed-Effect Models Are Designed for

As instances where fixed-effect models may be helpful, perhaps
relevant contextual characteristics were not collected such that it is
not possible to build an appropriate between-cluster submodel. As
a hypothetical example, consider a secondary data analysis using a
large public data set to investigate cannabis use where people are
clustered within U.S. states. The data may not include the legal status
of cannabis in each state at the time of data collection (cannabis laws
differ from state to state and many have changed recently). Cannabis
legality likely affects aspects related to cannabis use (e.g., how easy
it is to acquire, attitudes towards use), but this variable cannot be
incorporated in the model if it were never collected. A fixed-effect
model could control for cannabis legality (and all other state-level
variables) despite the variable not being collected. The effect of can-
nabis legality could not be directly estimated, however.
This type of situation may also occur when clustering is inciden-

tal. For instance, a study on anxiety may collect data from multiple
treatment centers. Perhaps these treatment centers differ in relevant
ways (e.g., different approaches to treatment, geographical differ-
ences, types of therapists) but differences are not related to the
research questions, so variables about the treatment centers are either
not collected (e.g., limited researcher time, high expense of data col-
lection) or the researchers do not have a theory about how center-
level variables affect anxiety. In this case, fixed-effect models
could factor out all center characteristics and allow the researchers
to fit models that focus on patient characteristics, controlling for
any center-level differences. Fixed-effects models also do not
require randomly sampled clusters, which can be useful if centers
are incidental such that researchers did not expend effort to randomly
sample centers when centers are not be related to the research
questions.
Data with few clusters can also present similar issues such that

there may not be sufficient information or variability to confidently
build a between-cluster submodel. Using the same treatment center
example, there may have only been seven centers in the data
because centers were not a research focus. Due to distributional
assumptions, multilevel models are susceptible to estimation issues
with few clusters, usually defined as 30 or fewer (Hox &McNeish,
2020; Maas & Hox, 2005).2 There also may not be sufficient var-
iability in between-cluster variables. For instance, if six centers are
affiliated with a hospital and only one center is not, it would be dif-
ficult to reliably estimate the effect of hospital affiliation with so lit-
tle variability in this predictor.
In such cases, a fixed-effect model may be the preferred choice

even if researchers may have a reasonable between-cluster submodel
in mind. When the data may not be sufficiently rich to support a
between-cluster submodel, potential insights about specific
between-cluster predictors may be sacrificed to fortify the integrity

of within-cluster estimates where the sample size is larger and mod-
eling can be conducted more assuredly.

Lastly, fixed-effect models are well-suited for instances where the
primary motivation is inference to a specific set of clusters rather
than a broader population. Because fixed-effects models do not
make distributional assumptions, their inferences generalize only
to the clusters included in the data (A. Bell et al., 2019). This lack
of generalizability is sometimes cited as a weakness, but it can be
a strength in situations where the target of inference is restricted to
clusters specifically in the data. If clusters represent all U.S. states,
all countries in the European Union, schools in a particular district,
or all hospitals in a county; generalizing beyond the sample may not
be relevant and distributional assumptions may not be helpful or
necessary (Clark & Linzer, 2015). This maps onto the distinction
of fixed versus random ANOVA where fixed ANOVA generalizes
only to the conditions included in the study whereas random
ANOVA generalizes to the population of possible conditions to
which participants could have been exposed (Hedges & Vevea,
1998).

Hypothetical Research Question and Example Analysis

With the general idea of each method covered, this section pro-
vides example analyses for each method to answer different hypo-
thetical research questions from a single data set. Data and code
for fitting all example models in SAS and R is provided on the
Open Science Framework page associated with this article, https://
osf.io/w4x9n/.

Example Data

This section uses the 1982 High School Beyond data set that
appears in the Raudenbush and Bryk (2002) multilevel modeling
textbook. The data contain 7,185 U.S. high school students clustered
within 160 schools and each school has a different number of stu-
dents (range= 14–67). The main outcome is math achievement
scores (M= 12.75, SD= 6.88). There are two student-level predic-
tors in the data: student SES (M= 0, SD= 0.78) and an indicator for
whether the student’s racial identity is non-White (yes= 28%).
There are also two school-level predictors: whether the school is
public or private (44% private) and the number of students in the
school (M= 1,097, SD= 629).

The original focus of predicting achievement scores based on
racial and socioeconomic differences may not feel maximally
inclusive to some readers 40 years later. Nonetheless, there is
an expanding literature in educational and developmental psy-
chology on achievement gaps based on student racial identifica-
tion and socioeconomic background (e.g., Assari et al., 2021;
Howard, 2019; Merolla & Jackson, 2019) and how differences
persist throughout the lifespan (Henry et al., 2020). This work
became especially prevalent after Covid-19 as gaps are forecasted
to widen (Bailey et al., 2021) despite previously shrinking (albeit
slowly) for decades (Hanushek et al., 2022; Hashim et al., 2020).
This research emphasizes contextual characteristics in relation to
the formation and reduction of gaps such as instructor mindset

2 There are small sample corrections (Kenward & Roger, 1997, 2009) and
Bayesian methods to address small sample issues in multilevel models (e.g.,
Baldwin& Fellingham, 2013; Stegmueller, 2013; van de Schoot et al., 2015).
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(Canning et al., 2019), teaching style (Theobald et al., 2020), and
school climate (Berkowitz, 2021), which maps well onto the dif-
ferent approaches for clustered data. In sum, these data and the
hypothetical research questions in subsequent example analyses
are consistent with ongoing research to quantify and reduce
achievement gaps and promote equitable outcomes rather than
being an antiquated example that uses outdated terminology
and ideas.

Clustered Errors

The hypothetical research question is whether reporting a
non-White racial identity moderates SES achievement gaps in
math scores (i.e., whether the SES achievement gap is the same
size for students identifying as White or non-White). This research
question does not involve exploring school influences on this asso-
ciation and there is no explicit interest in quantifying whether
achievement gaps are heterogeneous across different schools.
The clustered nature of the data is not necessary to answer this
question and the ability to address this question would be unaf-
fected if it were feasible to collect data from a single school, so a
statistical correction for an independence violation may be
sufficient.
The regression model to address this question could be written as

Mathi = b0 + b1SESi + b2Non-Whitei

+ b3(SESi × Non-Whitei)+ ei (5)

and contains an intercept (β0), main effects for SES (β1) and
non-White identity (β2), and one interaction to test moderation
(β3). Estimates assuming independence are shown in the top of
Table 2; both main effects and the interaction are significant at
the .01 level. However, students are clustered within schools and
the standard errors may be incorrect because the independence
assumption upon which they rely is likely violated given the
data structure. Calculating the DEFT can approximate the mag-
nitude of this independence violation. The ICC is .18 and the
average cluster contains 7,185/160= 44.90 students, so

DEFT = ������������������������
1+ (44.9− 1)× 0.18

√ = �����
8.90

√ = 2.98. This DEFT
value is too large to reasonably ignore because the standard errors
are estimated to be about three times larger if clustering were

accounted than if independence were assumed. It therefore
seems prudent to correct the standard errors to reflect the cluster-
ing of observations so that the inferences are more accurate.

The results from the same model with clustered errors are shown at
the bottom of Table 2. Clustered errors do not impact the regression
coefficients given that they do not rely on the independence assump-
tion. Standard errors, t-statistics, degrees of freedom, and p-values are
all adjusted because these values are used for inference and are
affected when independence is violated.

Clustered standard errors are about 1.5 to two times larger than the
standard errors from the model assuming independence rather than
the 2.98 times larger suggested by the DEFT. The DEFT is an esti-
mated value and tends to be conservative. Clustered errors correct
the standard errors of each coefficient individually whereas the
DEFT is an estimate for the entire design. In this way, DEFT is
somewhat analogous to a Dunn–Bonferroni correction—it is easy
to calculate and provides a conservative approximation, but more
sophisticated approaches provide refined adjustments (i.e., clustered
errors are more efficient than multipliying standard errors assuming
independence by the DEFT).

The conclusion for the interaction changes after clustering the
errors. When assuming independence, there was evidence for mod-
eration (t[7, 181]=− 2.81, p, .01) such that the SES achievement
gap in math scores for students identifying as non-White is smaller.
Conversely, after clustering the errors, there was insufficient evi-
dence for moderation (t[159]=− 1.87, p= .06) such that the SES
achievement gap in math scores is indistinguishable for different
racial identifications. Of course, this elicits sentiments that “God
loves the .06 nearly as much as the .05” (Rosnow & Rosenthal,
1989, p. 1277). Nonetheless, the point is that ignoring clustering
can produce incorrect standard errors and change inferences, even
in cases where the ICC and DEFT are modest and the p-value in
the model assuming independence is nowhere near the .05 threshold.

Note that estimates in Table 2 are not disaggregated into
within-cluster and between-cluster effects, so they may be consid-
ered conflated. There are differing viewpoints about disaggregating
effects with clustered errors, which is discussed in detail in the
Advanced Considerations section.

Multilevel Models

Using the same data, imagine that the clustering is seen as providing
an opportunity to explore possible contributions of school character-
istics to achievement gaps. This could includewhether there is hetero-
geneity in the SES and non-White achievement gaps across schools
and, if so, whether a school being private explains some or all of
the heterogeneity. This research question is not merely about correct-
ing for the presence of clustering, so clustering the errors would be
less useful. Instead, the clustered nature of the data permits exploration
of heterogeneity and assessment of why achievement gaps may be
stronger or weaker in certain kinds of schools. Therefore, building a
multilevel model to quantify the heterogeneity and explain heteroge-
neity is a more suitable option. The main text focuses on the final
model, but Chapter B in the online supplemental materials provides
a more detailed account of the modeling building process.

Full Model

The full model to explore whether private school status (0= pub-
lic, 1= private) explains slope heterogeneity in SES and non-White

Table 2
Comparison of Estimates for a Linear Regression Model Assuming
Independence (Top) and a Linear Regression Model With Clustered
Errors (Bottom)

Effect Estimate SE df t p

Assuming independence
Intercept 13.50 0.09 7,181 152.28 ,.001
SES 2.94 0.12 7,181 24.28 ,.001
Non-White identity −2.94 0.18 7,181 −16.59 ,.001
SES×Non-White Identity −0.60 0.21 7,181 −2.84 .005

Clustered errors
Intercept 13.50 0.17 159 80.56 ,.001
SES 2.94 0.15 159 19.49 ,.001
Non-White identity −2.94 0.33 159 −8.91 ,.001
SES×Non-White Identity −0.60 0.32 159 −1.87 .063

Note. Degrees of freedom with clustered errors are calculated by J− 1.
SES= socioeconomic status.
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achievement gaps for math scores can be written as

Within-
School Submodel

Mathij = b0j + b1jSES
(CMC)
ij

+ b2jNon-White(CMC)
ij

+ b3j(SES
(CMC)
ij

×Non-White(CMC)
ij )+ rij

rij � N(0, s2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Between-
School Submodel

b0j = g00 + g01SESj + g02Non-White
(GMC)
j

+ g03(SESj × Non-White
(GMC)
j )

+ g04Privatej + u0j

b1j = g10 + g11Privatej + u1j

b2j = g20 + g21Privatej + u2j

b3j = g30

uj � MVN

0

0

0

⎡
⎢⎢⎣

⎤
⎥⎥⎦,

t00

t10 t11

t20 t21 t22

⎡
⎢⎢⎣

⎤
⎥⎥⎦

⎛
⎜⎜⎝

⎞
⎟⎟⎠.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

There are two different subscripts in Equation 6, i indexes students
and j indexes schools. Any term with i and j subscripts differs for
each student in each school whereas terms with only j subscripts
are the same for all students within a school but may differ across
schools. The within-school submodel is simply a linear regression
similar to Equation 5 and includes student characteristics (i.e., vari-
ables have i and j subscripts). The difference in Equation 6 is that the
within-school coefficients are heterogeneous and potentially differ
in each school (i.e., β coefficients have j subscripts). These coeffi-
cients therefore become outcomes in the between-school submodel
such that each β has a model to explain why its values vary in differ-
ent schools. This is what makes the model “multilevel” or “hierarchi-
cal,” coefficients in one equation simultaneously serve out outcomes
in equations at the next level (i.e., within-school coefficients are
between-school outcomes).
Between-school submodel equations include school characteris-

tics (i.e., variables only have j subscripts) to model contextual cir-
cumstances responsible heterogeneity in β. The main school
characteristic in Equation 6 is private school status, which appears
in the β0j, β1j, and β2j equations to assess whether the intercept,
SES achievement gap, or non-White achievement gap systematically
differ for public or private schools. Each β equation is not required to
have the same predictors and different variables can be used in dif-
ferent equations. Between-school coefficients are interpreted simi-
larly to a typical regression. The γ terms whose second subscript
is 0 represent the expected value of βwhen all predictors in the equa-
tion equal 0. The γ terms next to variables indicate the predicted
change in β when the predictor increases by one unit.
Equation 6 disaggregates all student-level predictors with

cluster mean centering such that SES(CMC)
ij = (SESij − SESj) and

Non-White(CMC)
ij = (Non-Whiteij − Non-Whitej), meaning a value

of “0” indicates that the student is at their school’s mean of the pre-
dictor. The school means of non-White identity (i.e., the proportion

of students identifying as non-White in the school) and SES predict
the intercept β0j to fully disaggregate effects of these predictors. The
school mean of non-White identity is further grand-mean centered

such that Non-White
(GMC)
j = Non-Whitej − Non-White to improve

interpretation such that 0 refers to a school with the sample average pro-
portion of students identifying as non-White (27.5% in this data) rather
than zero students identifying as non-White.

Including school means as a school-level predictor allows effects for
a one-unit increase at different levels to be separately estimated because
there are two coefficients associated with each student-level predictor.
For instance, γ10 and γ01 in Equation 6 both capture effects of SES,
the former is the effect of a one-unit SES increase in the student and
the latter is the effect for a one-unit SES increase in the school. The
two cluster means also interact in Equation 6 to differentiate
within-school (γ30) and between-school (γ03) moderation to assess
whether moderation is driven by the SES and racial identity of the
student or the SES and racial composition of the school.

The u terms are random effects capturing the sources of variance
in β not explained by the predictors. In other words, the u terms are
between-school error terms. For instance, u1 represents reasons why
the SES achievement gap varies across schools beyond private
school status. Which coefficients randomly vary across clusters is
up to the researcher’s discretion (and is sometimes limited by the
complexity that the data can accommodate). In Equation 6, within-
school moderation is modeled as a constant across schools with no
random effect, so the β3j equation has no u term.

Because there are multiple random effects, the distributional
assumption for the u terms is a multivariate normal distribution
defined by a mean vector and a covariance matrix. The mean vector
is comprised of three zeroes, one for each random effect. The τ
terms on the diagonal of the covariance matrix are the random
effect variances capturing heterogeneity in each β not explained
by the predictors in each respective β equation. τ00 corresponds
to unexplained heterogeneity in the intercept, τ11 captures unex-
plained heterogeneity in the SES achievement gap, and τ22 captures
the unexplained heterogeneity in the non-White achievement gap.
Off-diagonal terms of the covariance matrix capture systematic
relations between the coefficients (i.e., the random effect covari-
ances). For instance, if τ21 were positive, it would mean that
schools with higher values of β1j tend to have higher values of
β2j (i.e., different achievement gaps are systematically related
within the same school).

Results and Interpretation

Table 3 contains estimates from SAS PROC MIXED with restricted
maximum likelihood and Satterthwaite degrees of freedom. As an
example of how to interpret a disaggregated effect, a one-unit differ-
ence in SES for students attending the same public school with an
average proportion of students identifying as non-White (i.e., the
within effect; changing the student characteristic while keeping the
surrounding context constant) is estimated to result in a 2.39 point
gap (t[152]= 15.28, p, .01) whereas a one-unit difference in the
school mean of SES at a public school with an average proportion
of students identifying as non-White (the between effect) is estimated
to lead to a 4.41 point gap (t[147]= 41.47, p, .01). Effects refer to
public schools with an average proportion of students identifying
as non-White because effects are conditional on Private= 0 and
Non-White

GMC
j = 0.
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Holding a public-school student’s SES constant, the effect of
attending a public school with an average proportion of students
identifying as non-White whose mean school mean of SES is one
point higher (i.e., the contextual effect; holding the student charac-
teristic constant while changing the context) would be calculated
by the between effect minus the within effect: γ01− γ10= 4.41−
2.39= 2.02 points, t(187)= 4.50, p, .01.
The gap resulting from student-level differences in SES within

the same public school is about equal to the gap resulting from holding
a public-school student’s SES constant but moving them to a higher
SES public school, so the SES achievement gap in Math Scores
appears to have both individual and contextual sources of influence.
Regarding school characteristics, for average SES schools with an

average proportion of students identifying as non-White, the
non-White achievement gap in private schools is 2.12 points less
negative (−3.98 + 2.12=− 1.86; which still indicates a nonnull
gap t(77.6)=− 5.37, p, .01) than the non-White achievement
gap in public schools (−3.89 points).
The public–private difference in the non-White achievement gap

is significant, t(101)= 4.28, p, .01. The SES achievement gap
is also reduced and significant in private schools—2.39 for public
vs. 2.39− 1.03= 1.36 for private; t(153)= 7.86, p, .01. Non-
White and SES achievement gaps are both roughly halved in private
schools compared to public schools.
The random effect variances of non-White identity and SES are

τ11= 1.23 and τ22= 0.23, respectively, indicating that there is
achievement gap heterogeneity not explained by private school sta-
tus. However, the random effect variances are reduced from a model
that does not include private as a predictor where they were 2.14 and
0.45, respectively (see Chapter B in the online supplemental materi-
als), so private school status appears to at least partially explain dif-
ferences in achievement gaps across schools.

Regarding moderation, the model suggests marginal evidence for
student-level moderation, γ30=− 0.67, t(5187)=− 2.17, p= .03,
such that the SES achievement gap is reduced for students who identify
as non-White. However, there was no evidence to support between-
school moderation, γ03=− 1.02, t(145)=− 0.98, p= .33. These
results are not directly comparable to moderation in the model with
clustered errors because the multilevel model disaggregates within-
school and between-school moderation whereas the model with clus-
tered errors estimated a single aggregated moderation effect.

This example highlights the unique capabilities of multilevel
models. They can quantify heterogeneity in effects across clusters
and then build a model to identify potential reasons why heterogene-
ity exists by featuring coefficients as between-cluster outcomes.
Multilevel models can be powerful when their full potential is real-
ized and extend far beyond simply correcting standard errors.

Fixed-Effect Models

Similar to previous subsections, the goal of this subsection is to
test whether non-White identity moderates the SES achievement
gap in Math Scores. The difference in this subsection is that
there is concern that students from different schools may not be
comparable and that there are insufficient school characteristic
variables in the data to build a proper between-school submodel.
For instance, the only school characteristics in these data are
whether the school is private and how many students attend each
school, but perhaps there are other relevant school-level character-
istics that affect Math Scores (e.g., what proportion of teachers
have advanced degrees, whether calculus is offered) that are not
accessible in the data but for which the model should ideally
account.

Whereas clustered errors address the statistical issue presented by
clustering, a fixed-effect model addresses the substantive issues pre-
sented by clustering whereby different contextual circumstances
may affect the associations between predictors and Math Scores.
That is, the interest is estimating the moderation effect while control-
ling for all school differences. This is opposed to clustered errors,
which correct standard errors but do not control for school differ-
ences unless predictors responsible for school differences are
directly included in the model.

The traditional fixed-effect model for this situation would be

Mathi =
∑J
j=1

Cjaj + b1SESi + b2Non - Whitei

+ b3(SESi × Non - Whitei)+ ei

ei � N(0, s2)

. (7a)

Cj represents the school affiliation dummy for school j and αj is the
directly estimated school-specific intercept in school j. The sum-
mation sign ranges from 1 to J to indicate that there is a school affil-
iation dummy and school-specific intercept for each of the J
schools. There is no β0 intercept term because there are j unique
intercepts (αj). Otherwise, the model is a standard single-level
regression.

Equation 7a disaggregates main effects but will not properly disag-
gregate interactions (Balli & Sørensen, 2013; Giesselmann &
Schmidt-Catran, 2022). Chapter D in the online supplemental materi-
als covers this inmore detail, but the general idea is that Equation 7a is

Table 3
Estimates From Multilevel Model Examining Whether School
Characteristics Explain the Slope Heterogeneity in Effects Across
Schools

Effect Notation Estimate SE

Student characteristics
Intercept γ00 11.85 0.20
SES γ10 2.39 0.16
Non-White identity γ20 −3.98 0.36
SES×Non-White Identity γ30 −0.67 0.31

School characteristics
SES school mean γ01 4.41 0.42
Non-White school mean γ02 −2.61 0.57
SES School Mean×Non-White
School Mean

γ03
(ns) −1.02 1.03

Private γ04 1.64 0.30
Private× SES γ11 −1.03 0.23
Private×Non-White γ21 2.12 0.50

Variances
Intercept τ00 2.05 —

SES slope τ11 0.23 —

Non-White identity slope τ22 1.23 —

Residual σ2 35.63 —

Correlations
Intercept, SES slope (ns) 0.02 0.32
Intercept, non-White slope (ns) 0.02 0.26
SES slope, non-White slope (ns) −0.65 0.79

Note. SES= socioeconomic status; ns= not significant as the .05 level.
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equivalent multiplying first then centering (SESij × Non-Whiteij)−
(SESj × Non-Whitej) rather than centering first then multiplying
(SESij − SESj)× (Non-Whiteij − Non-Whitej) where only the latter
term disaggregates (Giesselmann & Schmidt-Catran, 2022, p. 1103).
If within-cluster interactions are present in a fixed-effect model, the
product must be manually cluster-mean centered to ensure proper dis-
aggregation (the main effects can still be entered in their raw form
because this only affects multiplicative terms). Equation 7b shows a
properly disaggregated fixed-effect model with an interaction.
Table 4 reports estimates from this model.3

Mathi =
∑J
j=1

Cjaj + b1SESi + b2Non-Whitei +

b3(SES
CMC
ij × Non-WhiteCMC

ij )+ ei

ei � N(0, s2)

. (7b)

In Table 4, the within-school SES achievement gap, t(7022)=
17.35, p, .01, and within-school non-White achievement gap,
t(7022)=− 13.58, p, .01, were significant but the within-school
moderation effect was not, t(7022)=− 1.54, p= .12. This indicates
that—controlling for all school influences—the SES achievement
gap is unaffected by whether the student reports a non-White identity.
Table 4 also shows that school characteristics collectively explain
19.1% of the variance in math scores, but the model does not enumer-
ate which school characteristics explain the most variance nor
does it estimate the effects for any specific school characteristic.
Between-school variance is simply factored out of the model.4

Individual characteristics explain an additional 6.3% of the variance.
Estimates are not identical to earlier models because estimated the

quantity being estimated is slightly different. The model with clustered
errors estimated an aggregated moderation effect rather than within-
school moderation in Table 4. The multilevel model (a) was conditional
on school characteristics and (b) retained some unexplained school-level
variance (i.e., the random intercept variance was nonzero) rather than
controlling for all school characteristics as in the fixed-effect model.

Advanced Considerations

Clustered Errors: Conflated Coefficients

In the clustered error example, predictor variables were included
in their raw form without centering. Uncentered predictors will not
cause any statistical issues with clustered errors (i.e., standard errors

will correctly quantify the sampling variability of the coefficients)
but there may be substantive issues with clustering and uncentered
predictors (i.e., the coefficients may be conflated).

For instance, with a predictor like SES, there may be a separate
effect of an individual having high SES (a within-cluster effect)
compared to the effect of attending a school comprised of mostly
high SES students (a between-cluster effect). The predictor variable
is the same (in this example, socioeconomic status [SES]), but a
one-unit increase may have a different effect on the outcome variable
depending on whether the characteristic of the person or the charac-
teristic of the school increases.

Whereas conflated coefficients are problematic in multilevel mod-
els because there is an explicit interest in separating different levels
of the hierarchy (e.g., Hoffman & Walters, 2022), conflated coeffi-
cients with clustered errors are more of a grey area because the anal-
ysis is neither strictly single-level nor multilevel. That is, the
regression model itself is single-level whereas the data are multi-
level. The idea of clustered errors is to remedy the discrepancy
betweenmodel and the data structure, so there can be conflicting per-
spectives on conflated coefficients with clustered errors.

Historically, clustered errors are motivated by the statistical issue of
correctly quantifying sampling variability in regression coefficients
(Sanders & Konold, 2023, p. 7), so there may be instances where
the aggregated effect remains the theoretical interest (Preacher et al.,
2016, p. 190). This viewpoint corresponds to clustered errors being
well-suited for a research question that could be addressed if one infi-
nitely large classroom existed and clustering is a nuisance introduced
by sampling limitations. In such a case, a researcher may not be inter-
ested in differentiating among different types of effects because this
distinctionmay be theoretically irrelevant given that the potential exis-
tence of these within and between effects is a byproduct of the sam-
pling design and unrelated to theory.

Nonetheless, this does not absolve the presence of conflated coeffi-
cients because—whethermeaningful or a nuisance—clustering can cre-
ate contextual influences that affect the interpretation of coefficients and
it may be relevant to disaggregate these effects even if doing so is not a
strict interest (A. Bell et al., 2019, pp. 1058–1059; Raudenbush&Bryk,
2002, p. 141).

Although multilevel models and fixed-effect models are histori-
cally more sensitive to substantive issues around conflated coeffi-
cients and more thought has been dedicated to tackling this issue

Table 4
Estimates for a Fixed-effect model Applied to the High School
Beyond Data

Effect Notation Estimate SE df t p

SES β1 1.97 0.11 7,022 18.00 ,.01
Non-White identity β2 −2.93 0.22 7,022 −13.24 ,.01
SES×Non-White Identity β3 −0.47 0.31 7,022 −1.54 .12
Residual variance σ2 36.11
R2 school characteristics 19.1%
R2 student characteristics 6.3%

Note. The model includes 160 school affiliation dummy variables and 160
corresponding school-specific intercepts are not reported in this table. SES=
socioeconomic status

3 Software output differs based on whether cluster affiliation coefficients
are absorbed.Absorption removes the variance explained by a factor variable
prior to estimating other coefficients. Computing standard errors requires
inverting a matrix and, if there are many school affiliation coefficients, this
inversion can be computationally demanding. Absorption retains the vari-
ance explained by all cluster affiliation dummies, but specific effects for
each cluster and their standard errors are omitted to facilitate computation.
The lm R function and SAS PROC REG do not absorb. SAS PROC GLM
depends on whether the cluster ID variable is included in a CLASS statement
(which does not absorb) or in an ABSORB statement (which does absorb).
The plimm R package absorbs.

4 Software output displays a single R2 value and does not split the variance
explained into cluster affiliation substantive components as in Table 4. This
split can be calculated manually by subtracting the R2 of a model with only
the cluster affiliation dummies from the R2 of the full model. In this example,
the full model R2 was 25.5% and the cluster affiliation-only model R2 was
19.1%. The lm function in R does not correct sums of squares when the inter-
cept in suppressed (e.g., Kvålseth, 1985), so R2 should use a reference cluster
specification in the lm function.
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in those modeling frameworks, it is possible to disaggregate a
single-level model with clustered errors. The “Blending Methods
Together” section described shortly will show how to import ideas
frommultilevel models into analyses with clustered errors to demon-
strate that clustered errors do not necessarily lock researchers into
aggregated coefficients if their theoretical interest calls for separating
within and between effects.

Clustered Errors: Generalized Estimating Equations and
Generalized Least Squares

The classical approach to clustered errors starts from a model
where the errors are assumed to be independent (i.e., V = s2I)
prior to correcting the standard errors based on dependencies in
the empirical errors. However, this approach can encounter difficul-
ties when the ICC is high (e.g., above .30; Zeger et al., 1988) or if
there is slope heterogeneity because the off-diagonal terms will be
quite different from 0, so the correction will be rather large
(Huang, 2022). Clustered errors can be augmented to adopt a differ-
ent baseline assumption to (a) build in intermediate steps, (b) reduce
the reliance on the empirical covariance matrix, and (c) reduce the
size of the correction.
This approach is referred to as generalized estimating equations

(GEE) in biostatistics (Liang & Zeger, 1986; Zeger & Liang,
1986) or feasible generalized least squares (FGLS) in econometrics
(e.g., Hansen, 2007). These methods are conceptually similar (e.g.,
Cameron & Miller, 2015, p. 355; McNeish, 2019, Footnote 2), but
not always identical (e.g., GEE accommodates discrete outcomes;
Ziegler & Vens, 2014).
The idea is to begin by assuming nonzero correlations between

observations in the same cluster. For instance, instead of beginning
from the premise that the errors are independent, one could begin by
assuming that errors from all observations in a cluster are equally
correlated (i.e., an exchangeable or compound symmetric structure).
The baseline assumption is called the working correlation (in GEE)
or covariance (in FGLS) structure. The model is estimated using the
working structure for how errors covary for observations in the same
cluster. Then, clustered errors are applied to protect inferences such
that standard errors are accurate even if the working structure is
incorrect (Diggle et al., 2002). Classical clustered errors are a special
casewhere theworking structure is a scalar matrix that is incorrect by
implying independence among the errors.
An exchangeable working structure is typically suitable for organi-

zationally clustered data with large ICCs (Ballinger, 2004). For
instance, for small six-person example discussed earlier, an exchange-
able working correlation would look like

1
r 1
r r 1
0 0 0 1
0 0 0 r 1
0 0 0 r r 1

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦
. (8)

The structure is block diagonal where observations in the same cluster
are related but observations in different clusters are independent. The
magnitude of the dependence within clusters is constrained to be
equal (i.e., there is no subscript on ρ). This equality applies to all obser-
vations in a cluster (e.g., errors for persons 1, 2, and 3 are equally

correlated) and across all the clusters (e.g., the within-cluster correla-
tions in Cluster 1 is the same as the within-cluster correlations in
Cluster 2).

The value of ρ is determined empirically from the errors of a
model assuming independence (Liang & Zeger, 1986, pp. 17–18).
Then the model is reestimated assuming that observations within
the same cluster have a correlation of r̂ rather than being indepen-
dent. Standard errors would reflect the fact that data are clustered
but will not necessarily be correct unless the exchangeable correla-
tion matrix is exactly correct. The clustered error process can then be
applied such that empirical errors (êj) are taken from the model
assuming observations have a correlation of r̂ (rather than 0 as
required by the independence assumption).5 This will produce stan-
dard errors that account for clustering and that are not reliant on the
selected working structure being exactly correct.

As a summary of the estimation process using an exchangeable
working correlation structure,

1. Estimate the regression coefficients assuming independence.

2. Use the errors in Step 1 to estimate the correlation (ρ)
between observations in the same cluster.

3. Reestimate the model assuming that observations in the
same cluster have a correlation of r̂.

4. Use the empirical covariance of the errors from Step 3 to cal-
culate standard errors that are robust to incorrect selection of
the working structure.

The end goal of GEE, FGLS, and the classical clustered error
approach is the same—produce standard errors that accurately quan-
tify sampling variability of the regression coefficients. Classical clus-
tered errors go from Step 1 directly to Step 4 because the assumption is
that observations are independent, so there are no off-diagonal terms
to estimate. This also means that the classical approach entrusts the
entire correction to the empirical covariance matrix. GEE and
FGLS add Steps 2 and 3 to help the correction be more efficient
(Cui&Qian, 2007). These additional steps build some aspects of clus-
tering into the standard errors in Step 3 so that the empirical covari-
ance matrix in Step 4 does not bear the full brunt of the correction.

Multilevel Models: Heterogenous Variance Models

Regression modeling in psychology revolves around the mean and
coefficients correspond to the expected change in themean of the outcome
when apredictor increases byoneunit.Multilevelmodels partition the var-
iance into different variance components, so it is possible to build models
that predict how the variance changes as a function of predictors (Hedeker
et al., 2008; Hoffman, 2007). These models recently have been proposed
for (a) modeling cohesion of work teams (Lang et al., 2018, 2019;
McNeish, 2021), (b) meta-analysis (Viechtbauer & López-López,
2022), (c) repeated trials in cognitive psychology (Williams et al., 2019,
2021), or (d) ecological momentary assessment data (Hedeker et al.,
2012; McNeish & Hamaker, 2020; Rast & Ferrer, 2018).

The models are referred to as heterogeneous variance or location-
scale models because they simultaneously model aspects of mean
change (the location) and variance change (the scale). The basic idea

5 Clustered errors are applied by default with GEE but are a secondary step
with FGLS. So, “FGLS with clustered errors” makes sense, but “GEE with
clustered errors” does not because clustered errors are implied GEE.
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is that—in a traditional multilevel model—any parameter in the
within-cluster submodel can be an outcome in the between-cluster sub-
model. This was seen directly in Equation 6 where the regression coef-
ficients (β) in the within-cluster submodel became outcomes in the
between-cluster submodel. However, the residual variance (σ2) is also
a parameter in the within-cluster submodel, so it too could take a j sub-
script and be modeled to vary across clusters as a function of predictors.
This type ofmodel could features2

j as anbetween-clusteroutcome and
then predict differences in, for instance, variability across teams to assess
hypotheses team cohesion (where “cohesion” is represented by small
within-team variance). With ecological momentary assessment data, the
same idea can be applied to assess what predictors make a time series
more stable or volatile. A similar process can also be conducted to capture
heterogeneous between-cluster variances (the τ terms; Hedeker et al.,
2008, 2012). Fitting location-scale models can require extra care because
they often are nonlinear given that variances cannot be negative (e.g.,
models may require PROC NLMIXED in SAS or nlme in R. The
LOCAL option inPROCMIXED provides limited support of thesemodels
as does the form= option in the random or weights option in the
lme R function).

Fixed-Effect Models: Incorporating Slope Heterogeneity

The fixed-effect model example included cluster affiliation
predictors as main effects, which is the fixed-effect model analog
of a random intercepts model. This assumes that slopes of the
within-cluster predictors are constant across schools. However,
fixed-effect models can also be specified in a way that permits
heterogeneity in the associations of within-cluster predictors
and the outcome (i.e., the analog of a random slopes model).
Instead of modeling slope heterogeneity with random effects as in a

multilevel model, a fixed-effect model can include interaction terms
among cluster affiliation dummies and a predictor. This results in J
slope coefficients per predictor, one per cluster. Unlike a multilevel
model where a subsequent focus is to build a between-cluster submodel
for the slope heterogeneity, cluster-specific coefficients in a fixed-effect
model already account for all collected and uncollected sources of
between-cluster variance. In a fixed-effect model, the cluster-specific
coefficients are directly estimated, meaning that there is no distributional
assumptions or variance components associated with the predictor but
that estimates do not generalize beyond the clusters included in the data.
If the fixed-effect model in Equation 7b were specified to incorpo-

rate slope heterogeneity for non-White identity and SES (without the
interaction term), the model would be written as

Mathi =
∑J
j=1

Cjaj +
∑J
j=1

b1j(SESi × Cj)

+
∑J
j=1

b2j(Non-Whitei × Cj)+ ei

ei � N(0, s2)

(9)

such that both predictors interact with all cluster affiliation dummies.
There are 160 clusters in these data, so the model would attempt to
estimate 160 coefficients for SES (one for each cluster) and 160 coef-
ficients for non-White identity (one for each cluster). Note that cluster-
specific coefficients are not estimable when there is no within-cluster
variability. In these data, 20 schools have no variability in non-White
identity (i.e., students in a school exclusively identify as White or

exclusively identify as non-White), so there are only 140 cluster-
specific coefficients for non-White identity in these data.

As specified in Equation 9, there are nomain effects for either SES or
non-White identity. This specification will directly estimate the effect in
each cluster. If a main effect were included, one of the cluster affiliation
dummies would be omitted and serve as the reference cluster. Themain
effect would correspond to the cluster-specific estimate of this arbitrary
reference cluster and the other cluster-specific coefficients would repre-
sent the difference between the cluster-specific slope in cluster j and the
cluster-specific coefficient for the reference cluster. To be clear, the
main effect would not be the average effect across all clusters. If the
average effect across all clusters were sought, this could be calculated
by taking an average of the cluster-specific coefficients, weighted by
the number of people within the cluster because fixed-effect model
coefficients are unpooled.

Blending Methods Together

To this point, approaches have been discussed as if they are mutu-
ally exclusive. However, the three methods form a general framework
for handling clustered data and benefits from onemethod can bemim-
icked or integrated into another method to blend strengths of different
approaches into a more coherent overall model that maximizes robust-
ness and minimizes weaknesses of applying each method in isolation.
Each permutation of methods is covered in a dedicated subsection.

Clustered Errors and Multilevel Models

Disaggregating Effects With Clustered Errors

Previously, it was noted that there is some ambiguity about
conflated coefficients with clustered errors, but the same centering
and specification principles from multilevel models can be applied
with clustered errors to disaggregate effects. Raudenbush and Bryk
(2002) disaggregated effects in single-level models to obtain correct
coefficient estimates of within and between effects (p. 141) but
noted that the standard errorswill be incorrect.McNeish (2019) showed
that clustering the errors in a disaggregated single-level model produces
accurate estimates of within and between effects with accurate standard
errors. Therefore, conflated coefficients are a consequence of centering
decisions andmodel specification, not necessarily themethod bywhich
clustering is accommodated. More plainly, disaggregation is not
restricted to multilevel models and can be applied with clustered errors
(Begg & Parides, 2003; Goetgeluk & Vansteelandt, 2008).

To demonstrate, consider a single-level model for the high school
beyond data that is similar to the earlier multilevel model example in
Equation 6,

Mathij = b0 + b1SES
(CMC)
ij + b2Non-White(CMC)

ij

+ b3(SES
(CMC)
ij × Non-White(CMC)

ij )

+ b4SESj + b5Non-White
(GMC)
j

+ b6(SESj × Non-White
(GMC)
j )+ b7Privatej

+ b8(SES
(CMC)
ij × Privatej)

+ b9(Non-White(CMC)
ij × Privatej)+ eij

. (10)

This model cluster-mean centers all within-school predictors and
includes schoolsmeans as between-school predictors. Themoderation
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effect is disaggregated as well. The only difference is that Equation 10
does not model heterogeneity in the coefficients (i.e., the β terms do
not have j subscripts). As the random slope variability in Table 3 was
rather large, GEE with an exchangeable working structure is used
rather than the classical clustered errors to improve efficiency of
the correction.
Table 5 compares fitting the single-level model in Equation 10

with GEE and fitting the multilevel model from Equation 6. The
coefficient estimates and standard errors are nearly identical, corrob-
orating previous claims that it is possible to disaggregate predictors
without a multilevel model.
As there is no slope heterogeneity with clustered errors, the two

models are not generally equivalent and multilevel models retain
advantages if quantifying slope heterogeneity is an interest.
Because clustered errors do not partition the variance, they also
have more limited variance explained options than multilevel mod-
els (see Chapter B in the online supplemental materials for more
details on variance explained). Coefficients from clustered errors
are completely pooled whereas coefficients from multilevel models
are partially pooled, so estimates can diverge if the number of people
per cluster varies widely and/or random slopes have large variances
because an exchangeable working structure becomes less effective
for accommodating complex covariance structures (J. W. Twisk,
2003). As a reference, cluster sizes in these data ranged from 14 to
67, but differences were minimal.
Nonetheless, if the research question concerns disaggregated

effects but not necessarily heterogeneity, clustered errors can be
serviceable to differentiate among within, between, and contextual
effects.

Clustering Errors in Multilevel Models

Multilevel models allow for the broadest possibilities of the three
methods covered, but this flexibility comes with additional assump-
tions. For instance, random coefficients require a distribution to be
specified. Normality is typically assumed but may be violated in

empirical data (e.g., Alonso et al., 2010). When normality of the ran-
dom coefficients is not upheld, fixed effect standard errors and var-
iance component estimates may be too large (Litière et al., 2007;
Schielzeth et al., 2020) and cluster-specific coefficients may be inac-
curate (McCulloch & Neuhaus, 2011a).

These problems tend to be mild and dissipate as the number of
clusters increases when the outcome is continuous (McCulloch &
Neuhaus, 2011b). Having 100 or more clusters tends to be sufficient
for robustness to mild or moderation normality violations (Jacqmin-
Gadda et al., 2007; Verbeke & Lesaffre, 1997), but the assumption
should be assessed to identify gross violations of normality
(Schielzeth et al., 2020). The assumption that the random effect dis-
tribution is correct also extends to selecting the correct covariance
structure, even if normality is reasonable (Wolfinger, 1993). This
means that covariances between random effects are properly mod-
eled and that the correct number of random effects have been
included, which can increase the risk for nonpositive definite esti-
mated covariance matrices or other convergence-related issues
increases if there are several random effects (Bates et al., 2015,
p. 18; Eager & Roy, 2017; McNeish & Bauer, 2022).

To protect against possible violations of the random effect distri-
butional assumptions (e.g., normality, a misspecified covariance
structure, or omitted random effects), it is possible to use clustered
errors within a multilevel model (Maas & Hox, 2004). Similar to
making standard errors robust to independence violations (or, robust
to covariance structure misspecification as in GEE or FGLS) in
single-level models, clustering the errors in a multilevel model can
make standard errors robust to random effect distributional assump-
tions (Gurka et al., 2011; Verbeke & Lesaffre, 1997).

Multilevel models imply a covariance matrix for observations
within the same cluster—which is informed by model assump-
tions—and is used to quantify the sampling variability of the fixed
effects. The estimated sampling variability based on the model-
implied covariance matrix will be correct to the extent that assump-
tions are correct. However, as with single-level models, multilevel
models can replace the model-implied covariance matrix with an
empirical covariance matrix. Just as clustered errors can provide
inference that is robust to single-level assumption violations like
homoskedasticity and independence, clustered errors in multilevel
models can provide inference that is robust to mild-to-moderate mul-
tilevel assumption violations like omitted random slopes or nonnor-
mality of random effects. Chapter C in the online supplemental
materials describes clustering errors in multilevel models.

Multilevel Models and Fixed-Effect Models

Relaxing Exogeneity Assumptions in Multilevel Models

A key assumption in multilevel models is exogeneity (Antonakis et
al., 2010), also called the zero conditional mean assumption (Grilli &
Rampichini, 2011). In single-level models, a version of this assump-
tion is made, which states that the errors are not systematically related
to the predictors (i.e., E(e|X) = 0). Multilevel models include
multiple error terms, so this assumption extends not just to the
within-cluster error (rij) but also to the random effects (uj), meaning
that predictors at either level cannot be related to error terms at either
level (Antonakis et al., 2021). Practically, this assumption is violated
when the functional form of predictors is incorrect (e.g., nonlinear
effects modeled as linear; Bauer & Cai, 2009) or when relevant pre-
dictors are omitted (Kim & Frees, 2006, 2007; Kim & Swoboda,

Table 5
Comparison of Estimates and Standard Errors for a Linear
Regression Model Using Cluster-Mean Centering With Clustered
Errors Using an Exchangeable Working Correlation Matrix and a
Multilevel Model With Cluster-Mean Centering

Effect

Estimate SE

CE MLM CE MLM

Student characteristics
Intercept 11.85 11.85 0.19 0.20
SES 2.38 2.39 0.16 0.16
Non-White identity −3.96 −3.98 0.36 0.36
SES×Non-White Identity −0.59 −0.67 0.33 0.31

School characteristics
SES school mean 4.40 4.41 0.41 0.42
Non-White school mean −2.61 −2.61 0.60 0.57
SES School Mean×Non-White
School Mean

−0.99 −1.02 1.00 1.03

Private 1.64 1.64 0.29 0.30
Private× SES School Mean −1.03 −1.03 0.23 0.23
Private×Non-White School Mean 2.09 2.12 0.49 0.50

Note. CE= clustered errors; MLM=multilevel model; SES=
socioeconomic status.
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2010; Tofighi & Kelley, 2016), particularly in the between-cluster
submodel. Essentially, multilevel models offer more possibilities,
but require that all submodels are properly specified.
A primary benefit of fixed-effect models is that the between-cluster

submodel is immune from misspecifications. The cluster affiliation
dummies necessarily explain all the between-cluster variance, so
there is no mechanism for between-cluster submodel misspecifica-
tions to affect the within-cluster submodel. That is, fixed-effect mod-
els limit the scope of exogeneity. However, the tradeoff with a
fixed-effect model is that effects of specific predictors in the
between-cluster submodel are inestimable. As noted by A. Bell et
al. (2019), this can limit the utility of fixed-effect models because
they “reveal almost nothing about the level-2 entities in the model ...
and only ever present a partial picture of the substantive phenomenon
represented by the model” (p. 1058).
However, this property of fixed-effect models can be recreated in a

multilevel model without sacrificing the ability to estimate effects of
specific predictors in the between-cluster submodel (A. Bell &
Jones, 2015; Dieleman & Templin, 2014; Hazlett & Wainstein,
2022; McNeish & Kelley, 2019). In a multilevel model, this can
be accomplished by (a) cluster-mean centering all predictors in the
within-cluster submodel and (b) including the cluster means of all
within-cluster predictors as predictors of the intercept in the
between-cluster submodel. This specification has been referred to
as the within-between specification (A. Bell & Jones, 2015;
Dieleman & Templin, 2014; McNeish & Kelley, 2019) or the bias-
corrected multilevel model (Hazlett & Wainstein, 2022) and is
related to the Mundlak (1978) and Chamberlain (1982) devices
from econometrics, where it is better known as the correlated ran-
dom effects approach (Schunck, 2013; Wooldridge, 2010).
Specifying a multilevel model this way artificially forces the two

submodels to be orthogonal (Hamaker & Muthén, 2020; Hazlett &
Wainstein, 2022), mimicking the process in fixed-effect models but
by a different mechanism. A fixed-effect model explains all
between-cluster variance with cluster affiliation dummies, making
between-cluster information orthogonal to within-cluster information
(i.e., if unexplained between-cluster variance is zero, any covariance is
also necessarily zero). A within-between multilevel model does not
explain all between-cluster variance, but centering and including clus-
ter means as predictors similarly imposes zero covariance between
submodels.
In doing so, omitted variables or model misspecification in the

between-cluster submodel cannot permeate to the within-cluster
submodel. This narrows the scope of exogeneity because within-
cluster estimates remain accurate so long as the within-cluster sub-
model is properly specified, which is identical to assumptions of a
fixed-effect model. However, because the between-cluster variance
is not explained by this specification, it is still possible to estimate
effects of specific between-cluster predictors.
As an example, consider estimating the within-cluster main effects

of non-White and SES math achievement gaps in the High School
Beyond data (the interaction term from previous models is omitted
to facilitate comparisons). Imagine that the research question is
aligned with a fixed-effect model such that the goal is to isolate the
within-cluster effect while completely removing effects of any col-
lected or uncollected between-cluster predictors. Table 6 compares
estimates from a fixed-effect model and a multilevel model with a
within-between specification as fit in SAS PROC GLM and SAS
PROC MIXED, respectively. The coefficient estimates, standard errors,

and test statistics for the within-cluster SES achievement gap and
non-White achievement gap are identical. In this multilevel specifica-
tion, school means of SES and non-White identity serve the same pur-
pose as the cluster affiliation dummies in a fixed-effect model,
absorbing potentialmisspecifications in the between-cluster submodel
such that the within-cluster submodel is independent and isolated
from possible between-level misspecification.6

Importantly, the multilevel model permits specific between-cluster
predictors and allows quantifying slope heterogeneity. That is, the
mechanism used to make submodels orthogonal in a within-between
multilevel model reduces the scope of exogeneity assumptions (sim-
ilar to fixed-effect models) without conceding the ability to estimate
effects in the between-cluster submodel (unlike fixed-effect models).
Note that between-cluster effect estimates are sensitive to omitted or
uncollected between-cluster variables (A. Bell et al., 2019, p. 1059).

Of course, multilevel models assume that clusters are randomly
sampled from the population, so the fixed-effect model retains
advantages for situations where the target of inference is a specific
group of clusters or if clusters are not representative of the popula-
tion. Nonetheless, protecting effects in the within-cluster submodel
from potential misspecifications in the between-cluster submodel is
not exclusive to fixed-effect models and can be recreated in a multi-
level model.

Hybrid Models for Incidental Clustering

Certain levels of clustering may not be relevant to the research
questions. For instance, the interest may be quantifying heterogene-
ity in the SES achievement gap and identifying possible school char-
acteristics that explain this heterogeneity. However, to recruit a
sufficient number of schools, schools are clustered in multiple dis-
tricts such that there is a three-level hierarchy (students within
schools within districts). The research questions may only concern

Table 6
Comparison of Estimates and SEs for a Multilevel Model With
Cluster-Mean Centering and Cluster Means Included as Predictors
and a Fixed-Effect Model

Effect

Estimate SE

MLM FEM MLM FEM

Student characteristics
Intercept 13.11 — 0.21 —

SES 1.95 1.95 0.11 0.11
Non-White identity −2.90 −2.90 0.22 0.22
Residual variance 36.14 36.12

School characteristics
SES school mean 5.33 — 0.40 —

Non-White school mean −1.54 — 0.55 —

Intercept variance 2.56 —

Note. MLM=multilevel model; FEM= fixed-effect model; SES=
socioeconomic status.

6 There are special cases where grand-mean centering or no centering can
produce the same within effect if cluster means are included as predictors
(e.g., Hamaker & Grasman, 2015, Section 2.1; Snijders & Bosker, 2012,
Ch 5). However, such a specification does not ensure that the within-cluster
submodel is orthogonal to the between-cluster submodel (Hamaker &
Muthén, 2020, p. 377), especially with random slopes (Snijders & Bosker,
2012, Section 5.3).
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the school level such that the district level is incidental, and the
research questions could be answered without the district level.
Existing studies find that incidental levels cannot be ignored without

adverse statistical ramifications unless the DEFT is small (Moerbeek,
2004; Pornprasertmanit et al., 2014; Tranmer & Steel, 2001; van den
Noortgate et al., 2005). Unlike a two-level hierarchy where ignoring
the second level inflates Type-I error rates, ignoring the third level of
a three-level hierarchy tends to decrease power (Moerbeek, 2004), so
it is in researchers’ interest to model incidental levels.
A three-level multilevel model could be employed such that the

variance is partitioned in student, school, and district components.
Although possible, there may be practical limitations for three-level
models with incidental levels. For instance, incidental levels often
have few clusters and few collected variables given that no research
questions exist at the level, which can exogeneity difficult to satisfy.
Alternatively, different levels of the hierarchy could be handled dif-

ferently, depending on the relevance of each level to the research ques-
tion (McNeish & Kelley, 2019). For instance, it may be simplest to
completely control for the district level to ensure that district-level
influences do not distort the student-level or school-level estimates.
In this case, a “hybrid" model could be built such that district affilia-
tion dummies are included in the model to absorb all sources of
district-level variance, but the student-level and school-level variance
are explicitly modeled with a multilevel model (McNeish &Wentzel,
2017). The overall model is not strictly a multilevel or fixed-effect
model, but instead incorporates different approaches to accommodate
each level in a manner that is consistent with its relevance to the
research questions. If the district level is wholly uninteresting, includ-
ing district affiliation dummies limits exposure to multiple issues
(sample size, random sampling of clusters, exogeneity, normality)
given that fixed-effect models require fewer assumptions.

Fixed-Effect Models and Clustered Errors

This combination may not be intuitive initially—cluster affiliation
dummies in a fixed-effect model make the errors conditionally inde-
pendent, so there would be no remaining within-cluster correlation
for clustered errors to correct. This is accurate in the purest form of
clustered data where there is only one source of within-cluster corre-
lation. However, real data are not always pristine, so it is possible
that the errors may not be entirely independent despite including clus-
ter affiliation dummies if there is another source of clustering other
than the level whose dummies have been included in the model
(e.g., Bertrand et al., 2004). In this case, clustering the errors in a
fixed-effect model can correct for any unforeseen sources of clustering
beyond the level whose cluster affiliation dummies were included.
For instance, if school affiliation dummies are included but there

are neighborhood influences that do not overlap with school affilia-
tion, the errors may still be dependent from the unmodeled neighbor-
hood level. In this case, clustering the errors could clean up
unintended dependence that exists beyond the primary source of
clustering (Pustejovsky & Tipton, 2018).
Alternatively, school affiliation dummies may be used but perhaps

students are further clustered within classrooms. Clustering the
errors on top of adding school affiliation dummies would result in
accurate standard errors if there were dependence due to classrooms
(Lee & Pustejovsky, 2023). As another example, errors from a fixed-
effect model may be heteroskedastic, so clustered errors could be
applied to ensure proper inference if regression assumptions beside

independence are not upheld. Combining fixed effects and clustered
errors is also more common in longitudinal data to address serial
dependence (i.e., high correlations between nearby timepoints;
Arellano, 1987; Moody & Marvell, 2020).

Considerations for Longitudinal Data

So far, the focus has been on data with people clustered within
organizational units. However, longitudinal data are a special case
of clustered data where repeated measures are clustered in people.
Many of the principles discussed previously apply to longitudinal
clustering; however, there are some special considerations resulting
from design and data structure differences between organizationally
and longitudinally clustered data. This section overviews main dif-
ferences for each method.

Clustered Errors

Classical clustered errors are less useful in longitudinal data
because ICCs are often higher than in organizationally clustered
data and heterogeneity in growth trajectories is common. As a
result, GEE or FGLS tend to be more useful with longitudinal
data (Hin & Wang, 2009; Pan & Connett, 2002). In longitudinal
data, the main utility of GEE or FGLS is to estimate the marginal
or population-averaged growth trajectory, which captures the
overall trend across people. This is opposed to multilevel models
where person-specific growth trajectories are estimated.
Advantages and disadvantages of marginal versus person-specific
growth models have been widely debated in biostatistics (e.g.,
Heagerty & Zeger, 2000; Hu et al., 1998; Hubbard et al., 2010;
Zeger et al., 1988), but the main takeaway is the GEE and
FGLS are ideally suited for research questions focusing on what
variables influence baseline values or the rate of change of the
average trajectory.

A complication with GEE and FGLS in longitudinal data is that
there are more sensible options for the working structure. If students
are clustered within schools, there is not typically a strong reason to
suspect that Student 1 and Student 2 will be more related than
Student 1 and Student 3. People are roughly interchangeable with
respect to contextual influences, so an exchangeable working struc-
ture is sufficient for many organizationally clustered data. However,
observations in longitudinal data are timepoints, so it is often more
plausible that Time 1 and Time 2 are more strongly related than Time
1 and Time 3 because they are closer together in time (i.e., time may
not be exchangeable).

An exchangeable working structure can be used with longitudinal
data, which would assume that correlations between timepoints are
constant regardless of the distance between timepoints. However,
other structures are worth considering such autoregressive/Markov
(correlations between timepoints decay systematically as timepoints
are further apart), Toeplitz (correlations between timepoints decay as
timepoints are further apart but not necessarily systematically) or
unstructured (correlations between timepoints do not follow a dis-
cernible pattern).

GEE does not use the full likelihood during estimation, so GEE
is only robust to data that are missing completely at random and the
popular full-information maximum likelihood method cannot be
applied. However, weighting methods (DeSouza et al., 2009;
Fitzmaurice et al., 1995; Preisser et al, 2002) or multiple
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imputation (Lipsitz, et al., 2004; Paik, 1997; J. Twisk & de Vente,
2002) have been developed to accommodate missing at random
data that are commonly associated with dropout or attrition in lon-
gitudinal studies. Note that likelihood-based versions of GEE can
be implemented (Molenberghs & Kenward, 2007) and have been
referred to as covariance pattern models (Jennrich & Schluchter,
1986). Covariance pattern models are essentially a maximum like-
lihood version of FGLS and can similarly be paired with clustered
errors.

Multilevel Models

With longitudinal data, the between-person submodel corre-
sponds to individual differences in growth trajectories because the
cluster variable is a person. Random coefficients therefore capture
heterogeneity in baseline values or growth rates. Correspondingly,
multilevel models are ideally suited for research questions interested
in quantifying and explaining individual differences in growth tra-
jectories over time given that multilevel models directly quantify
heterogeneity in growth parameters (Singer, 1998; Zeger et al.,
1988). With longitudinal data, ideas behind multilevel models are
sometimes expressed in a structural equation framework where
they are called latent growth models (Bauer, 2003; Bollen &
Curran, 2006; Curran, 2003; Grimm et al., 2016), although minor
differences between multilevel models and latent growth models
do exist (McNeish & Matta, 2018).
In the longitudinal context, person-mean centering is common to

disaggregate within-person and between-person effects and distin-
guish between momentary and habitual changes (Curran & Bauer,
2011; Hamaker & Grasman, 2015). There is also a greater focus
on the within-person residual covariance structure. With organiza-
tionally clustered data, the within-cluster residual variance is typi-
cally modeled as being constant across all people in the same
cluster (σ2). However, the within-person residual variance in longi-
tudinal data refers to time, so there are more potentially sensible
options (Hoffman, 2015).
A main distinction in longitudinal data is whether the within-

person residual variance is constant or varies over time (Grimm &
Widaman, 2010; Kwok et al., 2007). Time tends to be the main
focal predictor in longitudinal data, so there are often more interac-
tions with predictors and time or more complicated functional forms
for the predictors or for time to better capture how the outcome
changes (e.g., polynomials, nonlinear models; Cudeck & Harring,
2007).
Missing longitudinal data are more likely to be missing not at ran-

dom (MNAR) due to dropout and attrition related to the outcome. For
example, participants in a depression studymay drop out because their
depression is too high to continue participating (i.e., dropout is related
to the value that would have been reported if the participant remained
in the study). Specialized MNAR models exist such as Diggle–
Kenward selection models (Diggle &Kenward, 1994) or pattern mix-
ture models (Hedeker & Gibbons, 1997). Enders (2011) provides an
accessible overview of MNAR models in psychology.

Fixed-Effect Models

The prevailing utility of fixed-effect models remains the ability
to completely control for collected or uncollected sources of
between-cluster variance. In longitudinal data, this means that

fixed-effect models control for time-invariant sources of variance
and isolate time-varying sources (Allison, 2009; A. Bell & Jones,
2015). This may be particularly helpful in observational studies
where an intervention cannot be randomly assigned or situations
where potential confounders were not or could not be collected
(Gunasekara et al., 2014; Kaufman, 2008; Neuhaus & Kalbfleisch,
1998). Fixed-effect models allow causal claims under weaker
assumptions with longitudinal data because they rule out any possi-
ble time-invariant sources of confounding (Brüderl & Ludwig,
2015).

One caveat for fixed-effect models in longitudinal data is that
effects of specific time-invariant effects are not estimable. This
may be problematic if intervention effects are time-invariant (i.e.,
intervention group assignments are constant over time). Although,
a main interest is often whether growth is different between interven-
tion conditions rather than whether groups are different at baseline.
Intervention effects on growth trajectories can be directly estimated
with a Treatment× Time interaction, which is not collinear with the
person-affiliation dummies because the interaction has time-varying
variance through inclusion of the Time variable.

Fixed-effects models can be applied in conjunction with multi-
level models to control incidental levels of clustering. For instance,
if the focus is on students’ growth but students happen to be clus-
tered within schools (a three-level hierarchy), school affiliation dum-
mies can be included to control for collected and uncollected school
characteristics to ensure that the student-level estimates are not
affected by school-level differences. As noted earlier, longitudinal
data provide more opportunities to blend fixed-effect models with
clustered errors because there is greater concern that the within-
person covariance matrix has been properly modeled. That is, errors
of different timepoints within the same person often have a more
complicated correlation structure than errors between people clus-
tered within the same organization, so there is greater utility in esti-
mating standard errors in away that provides some protection against
within-person covariance misspecifications.

Considerations With Three-Level or Cross-Classified
Hierarchies

The focus has been on the simplest and most common two-level
case where individuals are nested within one organizational unit, but
individuals can be simultaneously clustered within more than one
organizational unit (a.k.a. multiway clustering, especially in econo-
metrics; Cameron et al., 2011). When there are two organizational
level units, clustering can be nested or cross-classified.

A nested hierarchy with two organizational units occurs when
membership in one organizational unit implies membership in
another higher organizational unit. For instance, if students are clus-
tered in schools which are clustered within districts (e.g., each school
has multiple students, each district has multiple schools), knowing a
student’s school also reveals their district because schools are nested
within districts such that all students belonging to a particular school
also belong to the same district.

Contrast this with a cross-classified hierarchy like students being
clustered within schools and neighborhoods (Rasbash & Goldstein,
1994). Due to different school types (public, private, magnet, etc.),
school attendance is not strictly based on geography. So, knowing
that two students attend school together does not imply that they
live in the same neighborhood and knowing that two students live
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in the same neighborhood does not imply that they attend school
together.
If trying to determine which type of hierarchy is present, nested

hierarchies easily allow rank ordering of levels. That is, it is clear
that Level-3 is composed of Level-2 units and Level-2 is composed
of Level-1 units. In cross-classified hierarchies, the two organiza-
tional units are harder to rank order, so it makes more sense to
label the different units as Level-2a and Level-2b rather than
Level-2 and Level-3. For example, neighborhoods are not necessar-
ily composed of schools and schools are not composed of neighbor-
hoods; both levels are composed of students but the structure of how
students are arranged into schools is not a function of neighborhood
(and vice versa).
Hierarchies with more than one organizational unit are straightfor-

ward to accommodate with multilevel models because the variance
is simply partitioned into additional sources (Goldstein, 1994; Grady
& Beretvas, 2010). Models with additional levels do require more
assumptions (e.g., exogeneity across more levels, distributional
assumptions of more random effects) and performance can deterio-
rate when assumptions are not upheld (Lee & Pustejovsky, 2023).
Clustered errors and fixed-effects models can accommodate more

than one organizational unit, often with fewer assumptions. An over-
view of these approaches with multiple organizational units is dis-
cussed next.

Nested Three-Level Hierarchies

Clustered Errors

With clustered errors (or GEE or FGLS), three-level nested data
are straightforward to accommodate because the cluster variable is
just the highest level of the hierarchy (Cameron et al., 2011;
Pepper, 2002). If students are clustered in schools which are clus-
tered in districts, clustering the errors by district (Level-3) appropri-
ately quantifies the sampling variability (i.e., Level-2 and Level-3
are corrected simultaneously). This approach is effective because
the empirical covariance used in the clustered error correction is
unstructured within a cluster such that off-diagonal terms are not
constrained to follow a particular pattern. Therefore, off-diagonal
elements in block j of Ω can be larger for observations that share
the same Level-2 unit than for observations from different Level-2
units. Essentially, clustering at Level-3 naturally builds in clustering
at Level-2 as a byproduct.
As one caution, samples sizes tend to be smaller at Level-3

because this level tends to be entities like school districts or a gov-
erning entity like towns, counties, or states. Effectiveness of clus-
tered errors is based on having many clusters, so small sample
corrections may be especially pertinent in three-level data (correc-
tions can be found in the EMPIRCAL option in SAS PROC
GLIMMIX or the clubSandwich R package; Pustejovsky,
2020). Corrections are applicable with classical clustered errors,
GEE, or FGLS (although software may differ for different
approaches). An exchangeable working structure is typically reason-
able for GEE or FGLS with three-level organizationally clustered
data. Sample code is provided in the online supplemental materials.

Fixed-Effect Models

An intuitive approach to fixed-effect models with three levels may
be to create dummies for both the Level-2 and Level-3 units and

include both sets of dummies as predictors. However, this would
exhaust degrees of freedom with Type-III sums of squares (A.
Bell et al., 2019; McNeish & Kelley, 2019) because the Level-3
dummies would be collinear with the Level-2 dummies.

A simpler approach is to include only the Level-2 dummies. The
reasoning is similar to the mechanism for clustered errors, only in
the reverse direction. The Level-2 dummies fully explain the variance
at Level-2, so there is no Level-2 remaining variance to partition
among Level-3 units. Dummies for the lowest between-cluster level
absorb variance of higher between-cluster levels. If there is a direct
interest in the Level-3 dummy estimates in each cluster, dummies
for both levels can be included with Type-I sum of squares, although
this will produce multiple reference clusters (one per Level-3 unit), so
some care may be required for proper interpretation (e.g., McCaffrey
et al., 2012).

Cross-Classified Hierarchy

Clustered Errors

Clustered errors are not as straightforward to apply to cross-
classified data as they are with three-level nested data because
Level-2a and Level-2b both need to be considered when the organi-
zational units are not nested. Full detail will not be provided in this
article (see Cameron et al., 2011 or Lee & Pustejovsky, 2023 for spe-
cific details about the computational mechanism), but the main idea
is that the empirical covariance for cross-classified clustered errors is
the sum of three separate calculations—clustering the errors based
on Level-2a, clustering the errors based on Level-2b, and clustering
the errors on the intersection of Levels-2a and 2b.

Cross-classified clustered errors can be implemented in the lfe
(Gaure, 2013), or fixest (Bergé, 2018) R packages. The online sup-
plemental materials provide example code for cross-classified data.
To the author’s knowledge, no SAS procedure currently allows for
cross-classified clustered errors.7 GEE has origins in longitudinal
clustering where cross-classification in less common, so there
tends to be less support for GEE with a cross-classified structure.
As of this writing in August 2023, the lfe and fixest documenta-
tion does not mention support for cross-classified clustered errors
with FGLS.

Fixed-Effect Models

With cross-classified data, a set of cluster affiliation dummies for
Level-2a and a set of cluster affiliation variables for Level-2b are
both added to the model. Doing so will account for all variance attrib-
utable to either Level-2a or Level-2b such that only the within-cluster
variance needs to bemodeled. Relatedly, no effects of between-cluster
predictors—either at Level-2a or Level-2b—can be directly estimated
because they will be collinear with the cluster affiliation dummies.

Computation can sometimes be a challenge and it is not always
straightforward to calculate cluster-specific intercepts because the
reference cluster corresponds to a membership in specific Level-2a

7 PROC SURVEYREG allows for multiple clusters to be declared but does
not appear to treat the different levels as cross-classified. Instead, it creates a
new cluster ID based on the permutations of the two cross-classified clusters
(i.e., the intersection of Level-2a and Level-2b). The errors are then clustered
by the newly created ID variable rather than the separately clustering by the
two original cluster variables.
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and Level-2b units. The lfe (Gaure, 2013) and fixest (Bergé,
2018) R packages can be helpful for implementing these models
as can SAS PROC GLM if clustered errors are not desired in conjunc-
tion with the fixed effects (note that ABSORB cannot be used for
cross-classified data in SAS).

Concluding Remarks

Clustered data can present some researchers with additional
opportunities to clarify mechanisms of behavior, but to other
researchers clustering can be an annoyance preventing appropriate
inferences. Clustered data does not impact all researchers or analyses
uniformly, so there is no one-size-fits-all statistical approach that ide-
ally handles clustering in all cases. Multilevel models are a common
option that allow researchers to leverage information in clustered
data to disentangle individual and contextual contributions, although
these opportunities come with assumptions and additional model
building steps. Clustered errors and fixed-effect models both see
clustering as a nuance to accommodate, although they handle clus-
tering in different ways. Clustered errors focus on statistical issues
whereas fixed-effect models are motivated by substantive issues.
Importantly, these three approaches are not mutually exclusive.
Ideas from different methods can be blended to tailor models to
the unique needs and questions of an analysis or to combine the flex-
ibility of multilevel models with the robustness of clustered errors or
fixed-effects models. The take-home message is to make statements
like “I need to use a multilevel model because my data are clustered”
antiquated because, principally, the research question should inform
the modeling approach. Clustered data do not require one specific
statistical approach, instead, the statistical approach should be
selected to best serve the needs of the research questions.
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