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Bivariate Correlation
and Regression

One of the most general meanings of the concept of a relationship between a pair of variables
is that knowledge with regard to one of the variables carries information about the other.
Information about the height of a child in elementary school has implications for the probable
age of the child, and information about the occupation of an adult can lead to more accurate
guesses about her income leve] than could be made in the absence of that information.

2.1 TABULAR AND GRAPHIC REPRESENTATIONS
OF RELATIONSHIPS

Whenever data have been gathered on two quantitative variables for a set of subjects or
other units, the relationship between the variables may be displayed graphically by means
of a scatterplot.

For example, suppose we have scores on a vocabulary test and a digit-symbol substitution
task for 15 children (see Table 2.1.1). If these data are plotted by representing each child as a
point on a graph with vocabulary scores on the horizontal axis and the number of digit symbols
on the vertical axis, we would obtain the scatterplot seen in Fig. 2.1.1. The circled dot, for
example, represents Child 1, who obtained a score of 5 on the vocabulary test and completed
12 digit-symbol substitutions.

When we inspect this plot, it becomes apparent that the children with higher vocabulary
scores tended to complete more digit symbols (d-s) and those low on vocabulary (v) scores
were usually low on d-s as well. This can be seen by looking at the average of the d-s scores,
Md,, corresponding to each v score given at the top of the figure. The child receiving the lowest
v score, 5, received a d-s score of 12; the children with the next lowest v score, 6, obtained an
average d-s score of 14.67, and so onto the highest v scorers, who obtained an average of 19.5
on the d-s test. A parallel tendency for vocabulary scores to increase is observed for increases
In q-s scores. The form of this relationship is said to be positive, because high values on one
variable tend to go with high values on the other variable and low with low values. It may also
be called linear because the tendency for a unit increase in one variable to be accompanied by
aconstant increase in the other variable is (fairly) constant throughout the scales. That is, if we
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20 2. BIVARIATE CORRELATION AND REGRESSION

TABLE 2.1.1
lllustrative Set of Data on Vocabulary
and Digit-Symbol Tests

Child (no.) Vocabulary Digit-symbol

1 5 12
) 8 15
3 7 14
4 9 18
5 10 19
6 8 18
7 6 14
8 6 17
9 10 20
10 9 17
11 7 15
12 7 16
13 9 16
14 6 13
15 8 16
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FIGURE2.1.1 A strong, positive linear relationship.
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FIGURE 2.1.2 A negative linear relationship.

said to be negative and linear. It should also be clear at this point that whether a relationship
between two variables is positive or negative is a direct consequence of the direction in which
the two variables have been scored. If, for example, the vocabulary scores from the first example
were taken from a 12-item test, and instead of scoring the number correct a count was made of
the number wrong, the relationship with d-s scores would be negative. Because such scoring
decisions in many cases may be essentially arbitrary, it should be kept in mind that any positive
relationship becomes negative when either (but not both) of the variables is reversed, and vice
versa. Thus, for example, a negative relationship between age of oldest child and income for
a group of 30-year-old mothers implies a positive relationship between age of first becoming
a mother and income.!

Figure 2.1.3 gives the plot of a measure of motivational level and score on a difficult d-s
task. It is apparent that the way motivation was associated with performance score depends on
whether the motivational level was at the lower end of its scale or near the upper end. Thus,
the relationship between these variables is curvilinear. Finally, Fig. 2.1.4 presents a scatterplot
for age and number of substitution errors. This plot demonstrates a general tendency for
higher scores on age to go with fewer errors, indicating that there is, in part, a negative linear
relationship. However, it also shows that the decrease in errors that goes with a unit increase
in age was greater at the lower end of the age scale than it was at the upper end, a finding that
indicates that although a straight line provides some kind of fit, clearly it is not optimal.

Thus, scatterplots allow visual inspection of the form of the relationship between two
variables. These relationships may be well described by a straight line, indicating a rectilinear
(negative or positive) relationship, or they may be better described by a line with one or more
curves. Because approximately linear relationships are very common in all sorts of data, we
will concentrate on these in the current discussion, and will present methods of analyzing
nonlinear relationships in Chapter 6.

——— PR T

"Here we follow the convention of naming a variable for the upper end of the scale. Thus, a variable called income
Means that high numbers indicate high income, whereas a variable called poverty would mean that high numbers

Indicate much poverty and therefore low income,
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FIGURE 2.1.3 A positive curvilinear relationship.
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FIGURE 2.1.4 A negative curvilinear relationship.

;onshi?

Now suppose that Fig. 2.1.1 is compared with Fig. 2.1.5. In both cases the relat;ggi :
between the variables is linear and positive; however, it would appear that vocabu 'ary pe deg®
better information with regard to d-s completion than did chronological age- Thatis, aust
of the relationship with performance seems to be greater for vocabulary than for age ™"y
one could make more accurate estimates of d-s scores using information about vocal ind”
using age. To compare these two relationships to determine which is greater, W° neEo g
of the degree or strength of the relationship between two variables that Wi bess 5 sc0®
from one pair of variables to another. Looking at the relationship between e
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FIGURE 2.1.5 A weak, positive linear relationship.

other questions come to mind: Should this be considered a strong or weak association? On the
whole, how great an increase in digit-symbol score is found for a given increase in vocabulary
score in this group? If d-s is estimated from v in such a way as to minimize the differences
between our estimations and the actual d-s scores, how much error will, nevertheless, be made?
If this is a random sample of subjects from a larger population, how much confidence can we
have that v and d-s are linearly related in the entire population? These and other questions are
answered by correlation and regression methods. In the use and interpretation of these methods
the two variables are generally treated as interval scales; that is, constant differences between
scale points on each variable are assumed to represent equal “amounts” of the construct being
measured. Although for many or even most scales in the behavioral sciences this assumption
is not literally true, empirical work (Baker, Hardyck, & Petrinovich, 1966) indicates that
small to moderate inequalities in interval size produce little if any distortion in the validity of
conclusions based on the analysis. This issue is discussed further in Chapter 6.

2.2 THE INDEX OF LINEAR CORRELATION
BETWEEN TWO VARIABLES: THE PEARSON PRODUCT
MOMENT CORRELATION COEFFICIENT

2.2.1 Standard Scores: Making Units Comparable

One of the first problems to be solved by an index of the degree of association between two
Vfiriables is that of measurement unit. Because the two variables are typically expressed in
dlfferent units, we need some means of converting the scores to comparable measurement
units. It can be readily perceived that any index that would change with an arbitrary change in
measurement unit—from inches to centimeters or age in months to age in weeks, for example—
could hardly be useful as a general description of the strength of the relationship between height
and age, one that could be compared with other such indices.
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TABLE 2.2.1
Income and Major Household Appliances in Original Units,
Deviation Units, and z Units

— 3
House- I-M, A-M, ‘
hold Income  Appliances =i =a I a Rank 7 Repy g
1 24,000 3 -3500 -—1.75 12,250,000 3.0625 1 1
2 29,000 7 +1,500 +2.25 2,250,000 5.0625 3 4
3 27,000 4 —-500 -.75 250,000 .5625 2 2
4 30,000 5 +2,500 +.25 6,250,000 .0625 4 3
Sum (¥) 110,000 19 0 0 21,000,000 8.75
Mean 27,500 4.75

sd? = Ti?/(n — 1) = 7,000,000; 2.92 = sd?

sdy = /Ti?/(n— 1) = 2,645.75; 1.71 = sd,

/sy =2 @[, =2a 7 z
1 —1.323 —1.025 1.750 1.050
2 +0.567 +1.317 0.321 1.736
3 —0.189 —0.439 0.036 0.193
4 +0.945 +0.146 0.893 0.021
= 0 0 3.00 3.00

To illustrate this problem, suppose information has been gathered on the annual income
and the number of major household appliances of four households (Table 2.2.1).% In the effort
to measure the degree of relationship between income (/) and the number of appliances @),
we will need to cope with the differences in the nature and size of the units in which th¢
two variables are measured. Although Households 1 and 3 are both below the mean 0B both
variables and Households 2 and 4 are above the mean on both (see i and a, scores expressed
deviations from their means, with the means symbolized as M, and M), respectively), ¥¢ 0
still at aloss to assess the correspondence between a difference of $3500 from the mean mcm:z
and a difference of 1.5 appliances from the mean number of appliances. We may attemp! d
resolve the difference in units by ranking the households on the two variables—1, 3: 2 . a;e
1,4, 2, 3, respectively—and noting that there seems to be some correspondence betwee"
two ranks. In so doing we have, however, made the differences between Households 1 anaS&
($3000) equal to the difference between Households 2 and 4 ($1000); two ranks in eac}l tfi ‘

To make the scores comparable, we clearly need some way of taking the different L ex0
of the two original sets of scores into account. Because the standard deviation (s@) i a0 = Jative
variability of scores, we may measure the discrepancy of each score from its mean () e
to the variability of all the scores by dividing by the sd:

CHO02EX01

2
(2.2.1) e T
n—1
to facilits®
?In this example, as in all examples that follow, the number of cases (n) is kept very small in Ordermuch Ui

the reader’s following of the computations. In almost any serious research, the n must, of course, be veé
(Section 2.9).
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where Ex? means “the sum of the squared deviations from the mean.”® The scores thus created
are in standard deviation units and are called standard or z scores:

(2.2.2) g i %
de de

In Table 2.2.1 the z score for income for Household 1 is —1.323, which indicates that its
value ($24,000) falls about 1% income standard deviations ($2646) below the income mean
($27,500). Although income statistics are expressed in dollar units, the z score is a pure number;
that is, it is unit-free. Similarly, Household 1 has a z score for number of appliances of —1.025,
which indicates that its number of appliances (3) is about 1 standard deviation (1.71) below
the mean number of appliances (4.75). Note again that —1.025 is not expressed in number of
appliances, but is also a pure number. Instead of having to compare $24,000 and 3 appliances
for Household 1, we can now make a meaningful comparison of —1.323 (z;) and —1.025 (z4),
and note incidentally the similarity of the two values for Household 1. This gives us a way of
systematically approaching the question of whether a household is as relatively wealthy as it
is relatively “applianced.”

It should be noted that the rank of the z scores is the same as that of the original scores and
that scores that were above or below the mean on the original variable retain this characteristic
in their z scores. In addition, we note that the difference between the incomes of Households 2
and 3 (I, — I; = $2000) is twice as large, and of opposite direction to the difference between
Households 2 and 4 (I, — I, = —$1000). When we look at the z scores for these same
households, we find that z;, — zj3 = .567 — (—.189) = .756 is twice as large and of opposite
direction to the difference z;, — z;4 = .567 — .945 = —.378 (.., .756/—.378 = —2). Such

proportionality of differences or distances between scores,
XX, %

(2.2.3) L = .
Xn — X, Zx, — X,

is the essential element in what is meant by retaining the original relationship between the
scores. This can be seen more concretely in Fig. 2.2.1, in which we have plotted the pairs of
scores. Whether we plot z scores or raw SCOres, the points in the scatterplot have the same
relationship to each other.

The z transformation of scores is one example of a linear transformation. A linear trans-
formation is one in which every score is changed by multiplying or dividing by a constant or
adding or subtracting a constant or both. Changes from inches to centimeters, dollars to fra_ncs,
and Fahrenheit to Celsius degrees are examples of linear transformatioqs. Such transformations
will, of course, change the means and sds of the variables upon which they are performed.
However, because the sd will change by exactly the same factor as the original scores (that
is, by the constant by which scores have been multiplied or divided) :jtnd because 2z chres_are
created by subtracting scores from their mean, all linear transformations of scores vyxll yield
the same set of z scores. (If the multiplier is negative, the signs of the z scores will simply be

reversed.) -
Because the properties of z scores form the foundation necessary for understanding

correlation coefficients, they will be briefly reviewed:

d with n — 1 in the denominator throughout to
ployed the sample sd with n in the

3 As noted earlier, this edition employs the population estimate of s
inferences to the population

conform with computer program output, in contrast to earlier cditjons', whxc.h em| ;
denominator in earlier equations in the book and moved to the population estimate when
involving standard errors were considered, and thereafter.
% : ]sewhere, unless
Also note that the summation sign, X, is used to indicate summation over all n cases here and e
otherwise specified.
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FIGURE 2.2.1 Household income and number of appliances.

1. The sum of a set of z scores (22) (and therefore also the mean) equals 0.

2. The variance (sd2) of the set of z scores equals 1, as does the standard deviation (sd).

3. Neither the shape of the distribution of X nor its absolute correlation with any other
variable is affected by transforming it to z (or any other linear transformation).

2.2.2 The Product Moment Correlation as a Function
of Differences Between z Scores

We may now define a perfect (positive) relationship between two variables (X and Y) as existing
when all zy and zy pairs of scores consist of two exactly equal values. Furthermore, the degree
of relationship will be a function of the departure from this “perfect” state, that is, a function
of the differences between pairs of zy and Zy scores. Because the average difference between
paired zy and zy and is necessarily zero (because M, = M, = 0), the relationship may be
indexed by finding the average* of the squared discrep;mcies between z scores, S(zg — &) /"

For example, suppose that an investigator of academic life obtained the (fictitious) d{m
shown in Table 2.2.2. The subjects were 15 randomly selected members of a large unin?fSIEy
department, and the data include the time in years that had elapsed since the faculty member®

footing on which we haye Placed the two v.

iab
We find that the s Wi

] ich
quared differences (¥squared) between z scores sums to 9-61‘?’ il 9

4
Because we have employed the samp], i
e-b.
have been based on this s i,

hen 290
4 : opulati . ro of n— 1, wheiis
d this equation should also use p — 1. PR b
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TABLE 2.2.2
zScores, z Score Differences, and zScore Products on Data Example
X Y
Time since No. of Xi—My W—My
Case Ph.D. publications sdy 2 i aaaal “n x—2y 2xy
1 3 18 —1.020 —.140 —.880 142
2 6 3 —.364 —1.225 .861 446
3 3 2 —1.020 —1.297 278 1.322
4 8 17 .073 -212 285 —.015
5 9 11 291 —.646 938 —.188
6 6 6 —.364 —1.008 .644 367
) 16 38 1.821 1.307 514 2.380
8 10 48 510 2.030 —-1.520 1.035
9 2 9 —1.238 -.791 —447 1.035
10 5 22 —.583 150 -732 -—.087
11 5 30 —.583 728 —-1311 -—.424
12 6 21 —.364 077 —441 -.028
13 ) 10 —.146 -.719 573 .105
14 11 27 728 511 217 372
15 18 37 2.257 1.235 1.023  2.787
z 115 299 0 0 0
¥ squared 1235 8635 14 14 9.614
M 7.67 19.93 .641 .613
sd? 19.55 178.33 1 1
sd 442 13.35 1 1

would equal zero and necessarily their sum and mean would also be zero. A perfect negative
relationship, on the other hand, may be defined as one in which the z scores in each pair are
equal in absolute value but opposite in sign. Under the latter circumstances, it is demonstrable
that the average of the squared discrepancies times n/(n — 1) always equals 4. It can also be
proved that under circumstances in which the pairs of z scores are on the average equally likely
to be consistent with a negative relationship as with a positive relationship, the average squared
difference times n/(n — 1) will always equal 2, which is midway between 0 and 4. Under these
circumstances, we may say that there is no linear relationship between X and Ys

Although it is clear that this index, ranging from 0 (for a perfect positive linear relation-
ship) through 2 (for no linear relationship) to 4 (for a perfect negative one), does reflect the
relationship between the variables in an intuitively meaningful way, it is useful to transform
the scale linearly to make its interpretation even more clear. Let us reorient the index so that
it runs from —1 for a perfect negative relationship to +1 for a perfect positive relationship. If

we divide the sum of the squared discrepancies by 2(n — 1) and subtract the result from 1, we
have

(2.2.4) i (M) :
2zn—1)

et G

5 ; s ;
- Note that this equation is slightly different from that in earlier editions. The n/(n — 1) term is necessary because
e sd used here is the sample estimate of the population sd rather than the sample sd which uses # in the denominator.
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which for the data of Table 2.2.2 gives

9.614
r=r=1— (%—-) =.657.

tion coefficient, invented by Karl Pearson in 18956 .

is the product moment correla inven
r is the pro f the linear relationship between two variables apg has
3

coefficient is the standard measure O
following properties:

1. It is a pure number and independent of the units of measurement.

2. Its value varies between zero, when the variables have no linear relationship, and 1 0
or —1.00, when each variable is perfectly estimated by the other. The absolute value thyg gi;zes
the degree of relationship. A

3. Its sign indicates the direction of the relationship. A positive sign indicates a tendency fo;
high values of one variable to occur with high values of the other, and low values to occur i,
low. A negative sign indicates a tendency for high values of one variable to be associateg
with low values of the other. Reversing the direction of measurement of one of the variableg
will produce a coefficient of the same absolute value but of opposite sign. Coefficients of equa)
value but opposite sign (e.g., +.50 and —.50) thus indicate equally strong linear relationships,
but in opposite directions.

2.3 ALTERNATIVE FORMULAS FOR THE PRODUCT MOMENT
CORRELATION COEFFICIENT

The formula given in Eq. (2.2.4) for the product moment correlation coefficient as a function
of squared differences between paired z scores is only one of a number of mathematically
equivalent formulas. Some of the other versions provide additional insight into the nature of 7
others facilitate computation. Still other formulas apply to particular kinds of variables, such
as variables for which only two values are possible, or variables that consist of rankings.

2.3.1 ras the Average Product of z Scores

It follows from algebraic manipulation of Eq. (2.2.4) that

(2.3.1) e aBAEE
n—1"

.The Product7m0ment correlation is therefore seen to be the mean of the products e
paired z scores.” In the case of a perfect positive correlation, because zy = Zy»

Yoty B2

n—1 n—1

=.1;

I'xyy =

For the data presented in Table 2.2.1, these products have been computed and oy =
9.193/14 = 657, necessarily as before.

6 momé Q
The term product moment ref, the first o
: ers to the fact that the co ion i i oduct of the
of X and Y, res G S e rrelation is a function of the pr

If we used zs b le i i vide by
z8 based on the Sample sd which divides by n, this average would also divi :
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2.3.2 Raw Score Formulas for r

Because z scores can be readily reconverted to the ori ginal units, a formula for the correlation
coefficient can be written in raw score terms. There are many mathematically equivalent

versions of this formula, of which the following is a convenient one for computation by
computer or calculator:

(2.3.2) ey = nIXY T XFY .
\/[n X~ (ZX)°|[nZ 1 - (T )]

When the numerator and denominator are divided by n?, Eq. (2.3.2) becomes an expression
of r in terms of the means of each variable, of each squared variable, and of the XY product:
Myy — MxMy

rXY = «
VMG — M) — M)

(2.3.3)

It is useful for hand computation to recognize that the denominator is the product of the
variables’ standard deviations, thus an alternative equivalent is

2 xy/(n—1)
(2.3-4) I'xy = W

This numerator, based on the product of the deviation scores is called the covariance and
is an index of the tendency for the two variables to covary or go together that is expressed
in deviations measured in the original units in which X and Y are measured (e.g., income in
dollars and number of appliances). Thus, we can see that r is an expression of the covariance
between standardized variables, because if we replace the deviation scores with standardized
scores, Eq. (2.3.4) reduces to Eq. (2.3.1).

It should be noted that r inherently is not a function of the number of observations and that
the n — 1 in the various formulas serves only to cancel it out of other terms where it is hidden
(for example, in the sd). By multiplying Eq. (2.3.4) by (n — 1)/(n — 1) it can be completely
canceled out to produce a formula for r that does not contain any vestige of n:

(2-3.5) Iyy = Ay_

/szzyz'

2.3.3 Point Biserial r

When one of the variables to be correlated is a dichotomy (it can take on only two values), the
computation of r simplifies. There are many dichotomous variables in the behavioral sciences,
such as yes or no responses, left- or right-handedness, and the presence or absence of a trait or
attribute. For example, although the variable “gender of subject” does not seem to be a quanti-
tative variable, it may be looked upon as the presence or absence of the characteristics of being
female (or of being male). As such, we may decide, arbitrarily, to score all females as 1 and all
males as 0. Under these circumstances, the sd of the gender variable is determined by the propor-
tion of the total » in each of the two groups; sd = /PQ, where P is the proportion in one group
and Q =1 — P, the proportion in the other group.® Because r indicates a relationship between
two standardized variables, it does not matter whether we choose 0 and 1 as the two values or
any other pair of different values, because any pair will yield the same absolute z scores.
\

8Note that here the sd is the sample sd (divided by n) rather than the sample-based estimate of the population o.
As noted carlier, because the ns in the equation for r cancel, this difference is immaterial here.
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TABLE 2.3.1
Correlation Between a Dichotomous and a Scaled Variable
Stimulus  Task
Subject condition score
no. X) » X, Xp Zy 24 8 WUz,
1 NONE 67 0 50 —041 —.802 .802 0.329 —0.329
2 NONE 72 0 50 1.63 —.802 802 —1.307 1307
3 NONE 70 0 50 0.81 —.802 802  —0.650 0.650
4 NONE 69 0 50 041 —.802 802 —0.329 0.329
5 STIM 66 1 20 —0.81 1.069 -—1.069 —0.866 0.866
6 STIM 64 1 20 —1.63 1.069 —1.069 -—1.742 1.742
7 STIM 68 1 20 0 1.069 —1.069 0 0
Sum 476 3 260 0 0 0 —4.565  4.565
Mean 68 429 3714 O 0 0
sd in sample 245 495 14.9 My NONE = 69.5 My STIM = 66.0
@ For example, Table 2.3.1 presents data on the effects of an interfering stimulus on task
performance for a group of seven experimental subjects. As can be seen, the absolute value

CHO2EX02 of the correlation remains the same whether we choose (X4) 0 and 1 as the values to represent

the absence or presence of an interfering stimulus or choose (Xz) 50 and 20 as the values to
represent the same dichotomy. The sign of r, however, depends on whether the group with the
higher mean on the other (Y) variable, in this case the no-stimulus group, has been assigned
the higher or lower of the two values. The reader is invited to try other values and observe the
constancy of r.

Because the z scores of a dichotomy are a function of the proportion of the total in each of
the two groups, the product moment correlation formula simplifies to

_ Mty — My)VPQ

pb
sdy

(2.3.6)

where My, and My, are the Y means of the two groups of the dichotomy and the sdy 18 tﬂli:
sample value, which is divided by 7 rather than n — 1. The simplified formula is called :
point biserial r to take note of the fact that it involves one variable (X) whose values are
one of two points and one continuous variable (Y). In the present example,

(2.3.7) e (66.0 — 69.5)/(.429)(.571) — 07,
2.45
The point biserial formula for the product moment r displays an interesting and
property. When the two groups of the dichotomy are of equal size, p = ¢ = .3, 80
The ry,;, then equals half the difference between the means of the z scores for Y, an
equals the difference between the means of the standardized variable.

useful

dso 2

2.3.4 Phi (¢) Coefficient

.. Vel
jonisé"
Ol’I'elauOn u[cd

@ When both X and Y are dichotomous, the computation of the product momentc com?s
. ated °

further simplified. The data may be represented by a fourfold table and the corrc!atioS
CHO2EX03  directly from the frequencies and marginals. For example, suppose a study inve

-
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TABLE 2.3.2
Fourfold Frequencies for Candidate Preference
and Homeowning Status

Candidate U Candidate V Total
Homeowners A B
19 54 73=A+B
Nonhomeowners C D
60 52 112=C+D

Total 79=A+C 106=B+D 185=n

difference in preference of homeowners and nonhomeowners for the two candidates in a local
election, and the data are as presented in Table 2.3.2. The formula for r here simplifies to the
difference between the product of the diagonals of a fourfold table of frequencies divided by
the square root of the product of the four marginal sums:

_ BC — AD

"= J@+B)C +D)A+ C)B+D)
_(54)(60) — (19)(52) _
~ J3)112)(79)(106)

Once again it may be noted that this is a computing alternative to the z score formula, and
therefore it does not matter what two values are assigned to the dichotomy because the standard
scores, and hence the absolute value of 7, will remain the same. It also follows that unless
the division of the group is the same for the two dichotomies (Py = Py or Qy), their z scores
cannot have the same values and r, cannot equal 1 or —1. A further discussion of this limit is
found in Section 2.10.1.

(2.3.8)

—.272

2.3.5 Rank Correlation

Yet another simplification in the product moment correlation formula occurs when the data
being correlated consist of two sets of ranks. Such data indicate only the ordinal position of
the subjects on each variable; that is, they are at the ordinal level of measurement. This version
of r is called the Spearman rank correlation (rg). Because the sd of a complete set of ranlfs
is a function only of the number of objects being ranked (assuming no ties), some algebraic
manipulation yields

2
(2.3.9) m1o S22t
n(n* —1)
Where d is the difference in the ranks of the pair for an object or individual. In Table 2.3.3 a set

of 5 ranks js presented with their deviations and differences. Using one of the general formulas

(2.3.4) for r’

r= ————’ny
Vo

o4t} 0% w22 27800

- /10410

CHO02EX04
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TABLE 2.3.3

orrelation Between Two Sets of Ranks

C

_Corslation Bet2ET
- -1 2 4

4 2 1~ 1 1
,’lz gty =121 -2 4 2 el el
5 3. 440 0 g1 0o -1 1
h s 3204 0o 0 0 2 4
5.1 5 .22 4 2 i _—_4 :1_ E
Sum 1—5- 5. 0m-10° 0710 -3 0 26

TABLE 2.3.4

Product Moment Correlation Coefficients
for Special Kinds of Data

Data type Coefficient
A scaled variable and a dichotomous variable  Point biserial 7 (7,5)
Two dichotomous variables ¢ orrg
Two ranked variables Spearman rank order r (rs)

The rank order formula (2.3.9) with far less computation yields

rS=]._6(_26.).

5(24)
L TR
100 it 2

which agrees with the result from Eq. (2.3.4).

We wish to stress the fact that the formulas for r,, r,, and rg are simply COII"Pumﬁonal
CQUIV?lc_tnts of !fhe previously given general formulaspfor 4;’ that reSSult from the mathema®
31:;21;01% ofd dichotomous or rank data (Table 2.3.4). They are of use when computatic” b
whateer E)nrmziac?l culator. They are of no significance when computers are used, bes™
other two values) 01:) arnr; t:zkiomp RT Hses will work when variables are scored 01 & 2? J

ranks without ties. It is obviously not worth the trouble t0 U5° SPEWﬂ]

programs to produce these speci
chdl s
produce them. pecial-case versions of 7 when a formula such as Ed-

2.4 RE
GRESSION COEFFICIENTS: ESTIMATING ¥ FROM X
. g vef;
; etsh:r;v:f variables as if they were of equal status- Ly Oenede“[
variable or criterion and th, cated asymmetrically, one being thought of s
atif(:) gﬂ}lltiar as the independent variable or predictor. These Iabel e
Ship between two variables may be under investig?i% "

are two reasons fi

Rl Or such i s g

scientific : e lnvestigation; one scient 5
question Jooks scientific and one technological-

TR upon one varj
orecasti e other, ical 4
SUng, as for example, when higl Z:;OS;COH(;OI teChnC;]g %;cpredifit ool
: grades are us
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grades with no implication that the latter are actually caused by the former. In either case the
measure of this effect will, in general, be expressed as the number of units of change in the Y
variable per unit change in the X variable.

To return to our academic example of 15 faculty members presented in Table 2.2.2, we wish
to obtain an estimate of ¥, for which we use the notation ¥, which summarizes the average
amount of change in the number of publications for each year since Ph.D. To find this number,
we will need some preliminaries. Obviously, if the relationship between publications and
years were perfect and positive, we could provide the number of publications corresponding
to any given number of years since Ph.D. simply by adjusting for differences in scale of the
two variables. Because, when ryy = 1, for any individual j, the estimated Eyj simply equals
2% then

bt 5
de SdX ’

and solving for j’s estimated value of Y,

sdy(X; — My)
) &\ | X i

Y. =
J de

My,

A

and because My, My, and sdy are known, it remains only to specify X; and then ¥; may be
computed.

When, however, the relationship is not perfect, we may nevertheless wish to show the
estimated ¥ that we would obtain by using the best possible “average” conversion or prediction
rule from X in the sense that the computed values will be as close to the actual Y values as is
possible with a linear conversion formula. Larger absolute differences between the actual and
estimated scores (¥; — f’j) are indicative of larger errors. The average error X(Y — Y)/N will
equal zero whenever the overestimation of some scores is balanced by an equal underestimation
of other scores. That there be no consistent over- or underestimation is a desirable property, but
it may be accomplished by an infinite number of conversion rules. We therefore define as close
as possible to correspond to the least squares criterion so common in statistical work—we
shall choose a conversion rule such that not only are the errors balanced (they sum to Zero),
but also the sum of the squared discrepancies between the actual ¥ and estimated Y will be
minimized, that is, will be as small as the data permit.

It can be proven that the linear conversion rule which is optimal for converting zy to an
estimate of Zy is

(2.4.1) By = reyxe

To convert to raw scores, we substitute for 2y = (¥ — My)/sdy and for 2y = (X — My)/sdy.
Solving for ¥ gives

A X-M
(2.4.2) ¥ = rypsdy (__sd_i) s T
X

It is usefu] to simplify and separate the elements of this formula in the following way. Let
de
(2.4.3) By =ryy a3,

and

(2.4.4) . BO ot My i BYXMX’
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from which we may write the regression equation for estimating ¥ from X as
(2.4.5) ¥ = ByxX + B,.

Alternatively, we may write this equation in terms of the original Y variable by includiy
an “error” term e, representing the difference between the predicted and observeq score fog
each observation: 1

(2.4.6) Y =ByX+By+e

These equations describe the regression of ¥ on X. Byy is the regression coefficient fo
estimating ¥ from X and represents the rate of change in Y units per unit change in X,
constant by which you multiply each X observation to estimate Y. By is called the regressiop
constant or Y intercept and serves to make appropriate adjustments for differences in siz
between X and Y units. When the line representing the best linear estimation equation (the
Y on X regression equation) is drawn on the scatterplot of the data in the original X and ¥
units, Byy indicates the slope of the line and B, represents the point at which the regression
line crosses the Y axis, which is the estimated ¥ when X = 0. (Note that B is sometimes
represented as A or Ayy in publications or computer output.)

For some purposes it is convenient to center variables by subtracting the mean value from
each score.® Following such subtraction the mean value will equal 0. It can be seen by Eq. (2.4.4)
that when both the dependent and independent variables have been centered so that both
means = 0, the B, = 0. This manipulation also demonstrates that the predicted score on Y
for observations at the mean of X must equal the mean of Y. When only the IV is centered,
the B, will necessarily equal My. For problems in which X does not have a meaningful zero
point, centering X may simplify interpretation of the results (Wainer, 2000). The slope Byy is
unaffected by centering.

The slope of a regression line is the measure of its steepness, the ratio of how much Y rises
(or, when negative, falls) to any given amount of increase along the horizontal X axis. Because
the “rise over the run” is a constant for a straight line, our interpretation of it as the number of
units of change in Y per unit change in X meets this definition.

Now we can deal with our example of 15 faculty members with a mean of 7.67 and 2 sd of
4.58 years since Ph.D. (Time) and a mean of 19.93 and a sd of 13.82 publications (Table 222)
The correlation between time and publications was found to be .657, so

Byy = .657(13.82/4.58) = 1.98,

By =19.93 — 1.98(7.67) = 4.73.

. . s 23 : jmaté
The regression coefficient, Byy, indicates that for each unit of increase in Time (X), »\;e es%mmat
, an

a change of +1.98 units (publications) in Y (i.e., about two publications per year)» & o5 US
using this rule we will minimize our errors (in the least squares sense). The Bo ter™ gv S
a point for starting this estimation—the point for a zero value of X, which is, of cOurs® ?mi .
the range for the present set of scores. The equation f/X = ByyX + By may be used t0 dete
the predicted value of Y for each value of X, and graphed as the YX line in a 562
illustrated for these data in Fig. 2.4.1. 42 2)
We could, of course, estimate X from Y by interchanging X and Y in Egs. 243 anal status:
However, the logic of regression analysis dictates that the variables are not of €4 yariabl®
and estimating an independent or predictor variable from the dependent or criterion

g 5 . tions
% As will be seen in Chapters 6, 7, and 9, centering on X can greatly simplify interpretations of equd
relationships are curvilinear or interactive,
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FIGURE 2.4.1 Regression of publications on time since Ph.D.

makes no sense. Suffice it to say that were we to do so, the line estimating X from Y (the X on
Y regression) would not be the same as the line estimating Y from X (the Y on X regression).

Neither its slope nor its intercept would be the same. . :
: The meaning of the regression coefficient may be seen quite well in the case in which the
independent variable is a dichotomy.!® If we return to the example from Table 2.3.1 where the

point biserial r = —.707 and calculate

2.45
N ol = '—3.5,
Brx 707(.495)

we note‘that this is exactly the difference between the two group means on Y, 66 — 69.5.
aleulating the intercept, we get

By = 68 — (—3.5)(:428) = 69.5,

_stimulus condition). This must be the

Which js equal to the mean of the group coded O (the no Al

€ase because the best (least squares) estimate of Y for each group is its own mean,

\\

i i tion here.
Chapter 8 is devoted to the topic of categorical IVs,

for which we provide only a brief introduc
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regression equation for the members of the group represented by the 0 point of ¢ dich
is solved as Otomy

¥ = Byx(0) + By = By = M.

2.5 REGRESSION TOWARD THE MEAN

A certain amount of confusion exists in the literature regarding the phenomenon of Tegression
toward the mean. It is sometimes implied that this is an artifact attributable to regression as gy
analytic procedure. On the contrary, it is a mathematical necessity that whenever two Variables
correlate less than perfectly, cases that are at one extreme on one of the variables will, op
the average, be less extreme on the other. There are many examples in the literature where
investigators mistakenly claim that some procedure results in a beneficial result when only
the regression effect is operating (Campbell & Kenny, 1999). Consider a research project in
which a neuroticism questionnaire is administered to an entering class and the students with the
poorest scores are given psychotherapy, retested, and found to improve greatly. The “artifact”
is the investigator’s claim of efficacy for the treatment when, unless the scores remained exactly
the same so that the correlation between pretest and posttest was 1.0, they were certain to have
scores closer to the mean than previously.

Although the number of cases in a small data set may be too small to show this phenomenon
reliably at each data point, examination of the zy and zy values in Fig. 2.4.1 will illustrate the
point. The median of time since Ph.D. for the 15 professors is 6 years. If we take the 7 cases
above the median, we find that their mean z score is +.82, whereas the mean z score for the 5
professors below the median is —.92. Now, the mean z score for number of publications for the
older professors is only .52 and the mean z score for publications for the younger profegsors
is —.28. The cases high and low in years since Ph.D. (X) are distinctly less so on publications
(Y); that is, they have “regressed” toward the mean. The degree of regression toward the mea
in any given case will vary with the way we define high and low. That is, if we defined high
time since Ph.D. as more than 12 years, we would expect an even greater difference betweer
their mean z on time and the mean z on publications. The same principle will hold in the other
direction: Those who are extreme on number of publications will be less extreme on yea{s
since Ph.D. As can be seen from these or any other bivariate data that are not perfectly hﬂe‘f“ny
related, this is in no sense an artifact, but a necessary corollary of less than perfect COT{elauo e

A further implication of this regression phenomenon is evident when one exammiis hat
consequences of selecting extreme cases for study. In the preceding paragraph, we founPh {
those whose Ph.D.s were no more than 5 years old had a mean z score for years S ¥ i
of —.92, but a mean z score for number of publication of —.28. An investigator might ‘lebe’
tempted to attribute the fact that these new Ph.D.s are so much closer to the mean~onﬂ?e well
of publications than they are on years since Ph.D. to their motivation to catch up i ion 183
documented academic rat race. However, recognition that a less than perfect correla makes
necessary and sufficient condition to produce the observed regression toward the IP?ZES iro
it clear that any specific substantive interpretation is not justified. (There is a deliCIO™ ;e
here: the lower the correlation, the greater the degree of regression toward the mear
more to “interpret,” spuriously, of course.) . orfect Jined"

Because regression toward the mean always occurs in the presence of an impe en at two
relationship, it is also observed when the variables consist of the same measure t satTl o
points in time. In this circumstance, unless the correlation is perfect, the extreme casp
will be less extreme at Time 2. If the means and sds are stable, this inevitably meaiﬂ
scores improve and high scores deteriorate. Thus, on the average over time, overwelB pest
lose weight, low IQ children become brighter, and rich people become poorer- Toas
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examples of regression to the mean occur is equivalent to asking why correlations between
time points for weight, IQ, and income are not equal to +1.00. Of course, measurement error
is one reason why a variable will show a lower correlation with itself over time, or with any
other variables. However, regression to the mean is not solely dependent on measurement error,
but on any mechanism whatsoever that makes the correlation less than perfect. Campbell and
Kenny (1999) devote an entire volume to the many ways in which regression to the mean can
lead to complexities in understanding change.

The necessity for regression toward the mean is not readily accessible to intuition but does
respond to a simple demonstration. Expressed in standard scores, the regression equation is
simply Zy = rxyzx (Eq. 2.4.1). Because an r of +1 or —1 never occurs in practice, Zy will
necessarily be absolutely smaller than zy, because r is less than 1. Concretely, when r = .40,
whatever the value of zy, 2y must be .4 as large (see a comparable set of values below Fig. 2.4.1).
Although for a single individual the actual value of zy may be larger or smaller than zy, the
expected or average value of the zps that occur with zy, that is, the value of Z,, will be .4
of the zy value (i.e., it is “regressed toward the mean”). The equation holds not only for the
expected value of zy for a single individual’s zy, but also for the expected value of the mean zy
for the mean zy of a group of individuals. Of course, this holds true even when Y is the same
variable measured at a later time than X. Unless the correlation over time is perfect, indicating
no change, or the population mean and sd increase, on the average, the fat grow thinner, the
dull brighter, the rich poorer, and vice versa.

2.6 THE STANDARD ERROR OF ESTIMATE AND MEASURES
OF THE STRENGTH OF ASSOCIATION

In applying the regression equation ¥ = ByxX + By, we have of course only approximately
matched the original ¥ values. How close is the correspondence between the information
provided about ¥ by X (i.e., ¥), and the actual Y values? Or, to put it differently, to what extent
is Y associated with X as opposed to being independent of X? How much do the values of Y,
as they vary, coincide with their paired X values, as they vary: equivalently, how big is e in
Eq. 2.4.6)?

As we have noted, variability is indexed in statistical work by the sd or its square, the
variance. Because variances are additive, whereas standard deviations are not, it will be more
convenient to work with sd%. What we wish to do is to partition the variance of Y into a portion
associated with X, which will be equal to the variance of the estimated scores, sd%,, and a
remainder not associated with X, sd%_;,, the variance of the discrepancies between the actual
and the estimated ¥ scores (¢). (Those readers familiar with ANOVA procedures may find
themselves in a familiar framework here.) sdlg, and sd?_p will sum to sd?, provided that ¥
and Y — j’ are uncorrelated. Intuitively it seems appropriate that they should be uncorrelated
!)§Cause ¥ is computed from X by the optimal (OLS!!) rule. Because Y’ = ByxX + (a constant),
itis just a linear transformation of X and thus necessarily correlates perfectly with X. Nonzero
correlation between ¥ and Y — ¥ would indicate correlation between X (which completely
determines 7') and ¥ — ¥, and would indicate that our original rule was not optimal. A simple
algebraic proof confirms this intuition; therefore:

(2.6.1) sd} = sd? + sdf_y = sd} + sdi,

s A

Hyy, . : ;
hi wf’- Introduce the term ordinary least squares (OLS) here, to represent the model that we have described, in
:i ich simple weights of predictor variable(s) are used to estimate Y values that collectively minimize the squared
'Screpancies of the predicted from the observed Ys, so that any other weights would result in larger average
d’scfepancy_

| -
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and we have partitioned the variance of ¥ into a portion determined by X anda residua] o ..
not linearly related to X. If no linear correlation exists between X and y > the optimg) rﬁ‘l’m‘m
us ignore X because Byy = 0, and minimize our errors of estimation by using Mol thee hag ‘
guess for every case. Thus we would be choosing that point about which the Squareq er‘:esl 1
are a minimum and sd%,_;, = sdlz,. More generally we may see that becauge (by Eq, 240rs ]
2y = ryyzy, - U
Yl _ » Xk _ o,

n—1 n—1=rXY’

2 2
SdZy = Txy

and because sd2, = 1, and

(2.6.2) sdl, =riy +sd._,
then r,zﬂ, is the proportion of the variance of ¥ linearly associated with X,
proportion of the variance of ¥ not linearly associated with X.

It is often helpful to visualize a relationship by representing each variable as a circle 12 The
area enclosed by the circle represents its variance, and because we have standardized each
variable to a variance of 1, we will make the two circles of equal size (see Fig. 2.6.1). The
degree of linear relationship between the two variables may be represented by the degree of
overlap between the circles (the shaded area). Its proportion of either circle’s area equals 12,
and 1 — 2 equals the area of the nonoverlapping part of either circle. Again, it is useful to
note the equality of the variance of the variables once they are standardized: the size of the
overlapping and nonoverlapping areas, r2, and 1 — r?, respectively, must be the same for each.
If one wishes to think in terms of the variance of the original X and Y, one may define the
circles as representing 100% of the variance and the overlap as representing the proportion of
each variable’s variance associated with the other variable, We can also see that it does not
matter in this form of expression whether the correlation is positive or negative because P
must be positive.

We will obtain the variance of the residual (nonpredicted) portion when we return to the
original units by multiplying by sd2 to obtain

and 1 — 12 js the

(2.6.3) sd}_y = sd3(1 — r2).

Zy

r= .50
r2=.25

1-f2=.75

FIGURE 2.6.1 Overlap in variance of correlated variables.

1aked
. n.q ﬂﬂme

'2Such figures are called Venn diagrams in mathematical statistics. Here we call them “bauanﬂfl;si; 1o implY it
from a logo for a now-defunct beer company, because we use them illustratively only, and do not

mathematical precision that should accompany a Venn diagram.
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The standard deviation of the residuals e, that is, of that portion of ¥ not associated with X is

therefore given by
(2.6.4) sdy_y = sdyv'1—r%

For example, when r = .50, the proportion of shared variance = r2 = .25, and .75 of sd% is not
linearly related to X. If the portion of Y linearly associated with X is removed by subtracting
ByX+Bo(=Y) from Y, the sd of the residual is reduced compared to the original sdy to
sdy_p = sdy+/.75 = 866 sdy.

We see that, in this case, although r = .50, only 25% of the variance in Y is associated
with X, and when the part of ¥ which is linearly associated with X is removed, the standard
deviation of what remains is .866 as large as the original SDy.

To make the foregoing more concrete, let us return to our academic example. The regression
coefficient Byy was found to be 1.98, the intercept By was 4.73, and ryy was .657. Table 2.6.1
gives the Y, X, and zy values and estimated ¥ and 7 from the regression equations (2.4.5)
and (2.4.1), which for these values are:

¥ =198X,+4.73 and
2Y = 657 Iy

The ¥ — ¥ values are the residuals for Y estimated from X or the errors of estimate in
the sample. Because ¥ is a linear transformation of X, ry; must equal ryy ( = .657). The
correlations between ¥ — ¥ and ¥ must, as we have seen, equal zero. Parallel entries are given
for the standardized 2, values where the same relationships hold.

Turning our attention to the variances of the variables, we see that

2 2
Mo Sy ey
sd 1
(2.6.5) = .657%2 = .4312.

The ratio sdy_p/sdy = /1 — r* = 754, which is called the coefficient of alienation, is the
part of sdy that remains when that part of Y associated with X has been removed. It can also be
thought of as the coefficient of noncorrelation, because  is the coefficient of correlation. The
standard deviation of the residual scores is given by Eq. (2.6.4) as sdy_jy = sdyy/1—12 =
13.35(.754) = 10.07, as shown in Table 2.6.1. For the bivariate case, the population variance
error of estimate or residual variance has df = n — 2 and is given by

(2.6.6) ) C e P2 (1-rp¥ (X —My)
Y-y — n—2 == D) .

For the two summations, Table 2.6.1 gives in its Y% row, 1521.51 for the ¥ — ¥ column
and 2674.93 for the ¥ column. Substituting, we get

1521.51 © (1= ,657%)2674.93
15-2 15-2

:lslg both equations give 117.04. When we take square roots, we obtain the standard error of
imate;

(2.6.7) Y- [a-rpE =My
SEY—f' = _2 = n— ) ’

Which equals 10.82. Here, too, df =n — 2.

SE} 3 =

CHO2EX05
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TABLE 2.6.1
Estimated and Residual Scores for Academic Example
X Y R -
Time since No. of . N .
PhD.  publications ¥ Y-Y % z—% Yy, Y-¥, Byt re 8
3 18 10.68 732 —-.67 .53 10.60 740 11.07 6.93
6 3 1663 —-13.63 —-24 —-99 1660 -13.60 16.77 -1377
3 2 1068 —-8.68 —.67 —.63 10.60 —8.60 11.07 —-9.07
8 17 20.59 -3.59 05 —-26 2060 —3.60 20.57 -3.57
9 11 2258 -11.58 J9 -84 2260 -—-11.60 2247 -1147
6 6 1663 —1063 —24 —77 1660 —10.60 1677 —1077
16 38 36.46 154 1.20 11 36.60 140 35.77 223
10 48 2456 2344 33 1.70 24.60 2340 2437 23.63
2 9 8.70 0.30 -.81 .02 8.60 40 9.17 -17
5 22 14.65 736 -.38 53 14.60 7.40 14.87 7.13
5 30 14.65 1536 —-.38 1.11 14.60 1540 14.87 15.13
6 21 16.63 437 -24 32 16.60 440 16.77 4.23
7 10 1861 —-861 -—-10 -—-.62 18.60 8.60 18.67 8.67
11 27 26.54 0.46 48 .03 26.60 40 26.27 73
18 37 4042 -342 148 -—-.25 4060 3.60 39.57 2.57
M 7.67 1993 19.93 0 0 0 19.93 0 19.93 0
sd 4.577 13.82 8.77 10.07 .657 754 10.072 8.40 10.07
sd®> 19.56 178.3 76.98 101.42 431 569 101.44 70.60 10157
Zx] 120.29 116.40 120.07
Bz 2674.93 1521.51

erx = rYZy = Txi’, = erEY = rf'X = 1.
Irxyy = erzy =ryp = .657

5. = .5689; T

'i(y_r) y-h =Ty-px =0-

Finally, f’w and f’v in Table 2.6.1 have been computed to demonstrate what happens Wh;Z
any other regression coefficient or weight is used. The values Byy = 2.0 and Byy = = wme
chosen to contrast with Byy = 1.98 (the regression constants have been adjusted 0 k-eezac
estimated values centered on Y). The resulting sd? for the sample residuals was larger 1tri1ma e
case, 101.44 and 101.57, respectively as compared to 101.42 for the least squares . fact
The reader is invited to try any other value to determine that the squared residuals wil
always be larger than with 1.98, the computed value of Byy. rmine

Examination of the residuals will reveal another interesting phenomenon. If o€ detfi canbe
the absolute values of the residuals from the true regression estimates and from the.YW’ : e tro°
seen that their sum is smaller for both ¥ — ¥y, (116.40) and ¥ — ¥,, (120.07) than it is f‘?:tﬁbuted
regression residuals (120.29). Whenever residuals are not exactly Symmeuicall}’ lent o
about the regression line there exists an absolute residual minimizing weight dlfff’«fa olute
Byx. To reiterate, Byy is the weight that minimizes the squared residuals, not thelrl is ool
value. This is a useful reminder that ordinary least squares (OLS), although very US¢™

one way of defining discrepancies from estimation, or error.!?

13Chapter 4 will introduce alternative methods, which are further presented in later chapters-

Affﬁﬁ?
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2.7 SUMMARY OF DEFINITIONS AND INTERPRETATIONS

The product moment ryy is the rate of linear increase in zy per unit increase or decrease in
z (and vice versa) that best fits the data in the sense of minimizing the sum of the squared
differences between the estimated and observed scores.

r2 is the proportion of variance in Y associated with X (and vice versa).

Byy is the regression coefficient of ¥ on X. Using the original raw units, it is the rate of
linear change in Y per unit change in X, again best fitting in the least squares sense.

B, is the regression intercept that serves to adjust for differences in means, giving the
predicted value of the dependent variable when the independent variable’s value is zero.

The coefficient of alienation, v/ 1 — r2, is the proportion of sdy remaining when that part of
Y associated with X has been subtracted; that is, sdy_yp /sdy.

The standard error of estimate, SEy_j, is the estimated population standard deviation (o)
of the residuals or errors of estimating Y from X.

2.8 STATISTICAL INFERENCE WITH REGRESSION
AND CORRELATION COEFFICIENTS

In most circumstances in which regression and correlation coefficients are determined, the
intention of the investigator is to provide valid inferences from the sample data at hand to some
larger universe of potential data—from the statistics obtained for a sample to the parameters
of the population from which it is drawn. Because random samples from a population can-
not be expected to yield sample values that exactly equal the population values, statistical
methods have been developed to determine the confidence with which such inferences can
be drawn. There are two major methods of statistical inference, estimation using confidence
intervals and null hypothesis significance testing. In Section 2.8.1, we consider the formal
mode] assumptions involved. In Section 2.8.2, we describe confidence intervals for Byy, By,
rxy. for differences between independent sample values of these statistics. In Section 2.8.3, we
present the null hypothesis tests for simple regression and correlation statistics. Section 2.8.4
critiques null hypothesis testing and contrasts it with the approach of confidence limits.

2.8.1 Assumptions Underlying Statistical Inference
with Byx, BQ, | £7 and ryy

Itis clear that no assumptions are necessary for the computation of correlation, regression, and
other associated coefficients or their interpretation when they are used to describe the available
sample data. However, the most useful applications occur when they are statistics calculated.on
5 Sample from some population in which we are interested. As in most circumstances in which
Slatistics are used inferentially, the addition of certain assumptions about the characteristics
of the population substantially increases the useful inferences that can be drawn. Fortunately,
these statistics are robust; that is, moderate departure from these assumptions will usually
Tesult in little error of inference.
cal})mbably the most generally useful set of assumptions are those that forrp what has been
ed the fixed linear regression model. This model assumes that the two variables have been

distinguished as an independent variable X and a dependent variable Y. Values of X are treated

a3 "fixed” in the analysis of variance sense, that is, as selected by the investigator rather than




42 2. BIVARIATE CORRELATION AND REGRESSION

sampled from some population of X values.!* Values of Y are assumed to be Tandomly gop, 1
for each of the selected values of X. The residuals (“errors”) from the mean valye o Yp td 3
each value of X are assumed to be normally distributed in the population, with equal Vadanfor
across the full range of X values. It should be noted that no assumptions about the shape of g,
distribution of X and the total distribution of Y per se are necessary, and that, of ot the .
assumptions are made about the population and not about the sample. This mode], exterlde; ,
to multiple regression, is used throughout the book.

2.8.2 Estimation With Confidence Intervals

A sampling distribution is a distribution of the values of a sample stafistic that would oceyy
in repeated random sampling of a given size, 7, drawn from what is conceived as an infinte
population. Statistical theory makes possible the estimation of the shape and variability of such
sampling distributions. We estimate the population value (parameter) of the sample statistic
we obtained by placing it within a confidence interval (CI) to provide an estimate of the margin
of error (me), based on these distributions.

Confidence Interval for Byy

We have seen that Byy is a regression coefficient that gives the slope of the straight line that
estimates Y from X. We will see that, depending on the context, it can take on many meanings
in data analysis in MRC, including the size of a difference between two means (Section 24),
the degree of curvature of a regression line (Chapter 6), or the effect of a datum being missing
(Chapter 11).

Continuing our academic example, we found in Section 2.4 that for this sample the least
squares estimate of Byy = 1.98, indicating that for each additional year since Ph.D. we estimate
an increase of 1.98 publications, that is, an increase of about two publications. If we were to
draw many random samples of that size from the population, we would get many values of Byx
in the vicinity of +1.98. These values constitute the sampling distribution of Byx and would
be approximately normally distributed. The size of the vicinity is indicated by the standard
deviation of this distribution, which is the standard error (SE) of Byy:

L)
(2.8.1) SE,, = M [1=0n
st n—2

Substituting,

1382 [1- 6572
U aBR N IS5 s,

Because this is a very small sample, we will need to use the ¢ distribution to determi™®
multiplier of this SE that will yield estimates of the width of this interval. Liké the 00%/ in
distribution, the ¢ distribution is a symmetrical distribution but with a relatively higher pembef
the middle and higher tails. The # model is a family of distributions, each for a different nzom" A
of degrees of freedom (df). As the df increase from 1 toward infinity, the ¢ distribution bec g it
progressively less peaked and approaches the shape of the normal distribution: od

dent

Tt sy g indepe®
In the “multilevel” models discussed in Chapters 14 and 15 this assumption is not made for all ind®?
variables.
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Appendix Table A, we ﬁnd that the necessary ¢ at .the two-tailed 5% level for 13 df is 2.16.
Multiplying 632 !)y 2.16 gives 1.36, the 95% margin of error (me). Then, the 95% confidence
imits (CLs) are given as 1.98+1.36 = '+.62 as its lower limit and +3.34 as its upper limit. If
.98 is so much smaller than the population value of Byy that only 2.5% of the possible sample

values are smaller still, then the population value is 1.36 publications above 1.98, that is,
3.34 (see Fig. 2.8.1), and if 1.98 is so much larger that only 2.5% of the possible sample Byy
values are larger still, then the population value is 1.36 publications below 1.98, that is, .62
(see Fig. 2.8.2). Thus, the 95% Cl is +.62 to +3.34. This CI indicates our 95% certainty that
the population value falls between +.62 and +3.34. Note for future reference the fact that the
CI for Byy in this sample does not include O (see Section 2.8.3).

Although the single most likely value for the change in number of publications per year
since Ph.D. is the sample value 1.98, or about 2 publications per year, we are 95% confident
that the true change falls between .62 and 3.34 publications per year since Ph.D. This may be
too large an interval to be of much use, as we should have expected when we examined so

3.34

1.98
2.5%

I 0 A S o
-1 0 1 2 3 4 5 6 7 8

FIGURE 2.8.1 Expected distribution of Bs from samples of 15 subjects when the
population B = 3.34.

.62

1.98
2.5%

1 1 ! 1
-25-15-05 0.5 /1.5 25 35

F 5
IGURE 2.8.2 Expected distribution of Bs from samples of 15 subjects when the
Population B = .62,

-
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small a sample. Were we to have found the same sample value of 1.98 on a sample a5

as 62, the standard error of Byy would go down to .294 (Eq. 2.8.1). When 1 = ¢, thirge
for SEg,, isn—2 = 60, so ¢ for the 95% CI = 2.00 (Appendix Table A). The me (s
of error) is now 2.00 (.294) = .588, less than half as large as before, so the 959 ¢y is nil;
1.98£(.588) = 1.40 to 2.56, from about 1.5 to 2.5 publications per year since Ph.D., distincly
narrower and thus more useful.

Although 95% ClIs are the most frequently used, other degrees of confidence, greater o
smaller, may be preferred. A multiplier of 2.6 will give an approximate 99% CI, and 13 an
approximate 80% interval for all but the smallest samples. Since standard errors are always
reported in computer output, and should always be reported in research reports, one can easily
approximate a CI that includes 68% (about %3) of the cases in the sampling distribution by taking
the me for the sample Byy value to equal its SE, so the approximate 68% CI is Byy +SEg, . The
0dds are then approximately 2 to 1 that the population Byy value falls between those limits.

Confidence Interval for B,

B, is the regression coefficient that gives the Y intercept, the value of ¥ when the ¥X
regression line that estimates ¥ from X is at X = 0. Although in many behavioral science
applications this coefficient is ignored, because the means of the variables are essentially on an
arbitrary scale, there are applications in which it is of interest. When zero on the X scale hasa
useful meaning, and is within the range of the observations, it tells us what the expected value
of Y is for X = 0. In Section 2.4, we found using Eq. (2.4.4) that for our running example the
intercept By = My — ByyMy = 19.93 — 1.98 (7.67) = 4.73, indicating a predicted va'lue of
4.73 publications when years since Ph.D. equals 0, that is, the individual has just obtamefi a
Ph.D. Of course, such a predicted value is not to be trusted under the circumstances in which
it falls outside the observed data, as it does here.

The standard error of B is given by

(2.8.2) LR
P o (n—1)sd3

SR m
We found from Eq. (2.6.7) that for this example, SEy_j = 10.82. Substituting fro
Table 2.6.1 for n = 15, My = 7.67, and sd? = 4.58% = 20.95.

2
SEj, = 10.82 it JOV i

15~ (14)(20.95)
We generate CIs for B, as before, using the ¢ distribution for n — 2 = 13 df. Fo g C17
CI, Appendix Table A gives t = 2.16, so the me = 2.16(5.59) = 12.07 and the 9; o [ 50
4.73 £ 12.07 = —7.34 to 16.80. The table gives for 13 df,z = 1.35 for the 80% o (IS
me = 1.35(5.59) = 7.55, and the 80% CI = 4.73 + 7.55, —2.82 to 12.28. These larfdenﬂy
with their negative lower limits, mean that with such a small sample we cannot even conrees :
say whether, on the average, faculty members had published before they got their e

r the 95%

Confidence Interval for an Estimated Y, Value
When we employ the regression equation
(2.4-5) f’ = BYXX + BO ofﬂ']@
" ‘nate
to estimate a particular ¥; from a particular value of X;, what we find is the Y coordlgz attefed
point on the YX regression line for that value of X. In the sample data, the ¥ values -

>
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above and below the regression line and their distances from the line are the residuals or errors.
The standard error of estimate (Eq. 2.6.7) estimates their variability in the population. In our
running example estimating number of publications from number of years since Ph.D., we
found SEy_y to equal 10.82. Let’s write the regression equation to estimate Yi, the number of
publications estimated for a specific faculty member with 9 years since Ph.D. The equation for
these values was found as ¥; = 1.98X + 4.73. Substituting X; = 9, we find ¥; = 22.58.

It is useful to realize that, whatever sampling error was made by using the sample Byy
(= 1.98) instead of the (unavailable) population regression coefficient, it will have more serious
consequences for X values that are more distant from the X mean than for those near it. For the
sake of simplicity, let us assume that both X and Y are z scores with means of 0 and standard
deviations of 1. Suppose that Byy = .20 for our sample, whereas the actual population value
is .25. For new cases that come to our attention with X; = .1, we will estimate f’, at .02 when
the actual mean value of Y for all X; = .1 is .025, a relatively small error of .005. On the other
hand, new values of X; = 1.0 will yield estimated IA’, values of .20 when the actual mean value
of Y for all X; = 1 is .25, the error (.05) being 10 times as large.

When a newly observed X; is to be used to estimate f/', we may determine the standard error
and thus confidence limits for this ¥;. The standard error of Y, is given by

1 (X, —My)?
2.8.3 SE; =SEy_y .[—+ ——5,
283 % Y“\/n+(n-1)sd§

where SEy_y (Eq. 2.6.7) is the standard error of estimate and is based on n — 2df. We found

from the regression equation that for X; = 9 years since Ph.D., we estimate ¥, = 22.58
publications. We find its standard error by substituting in Eq. (2.8.3),

1 (9—-17677
SE; = 10.82 \/ O =460k 503

57 (14)(20.95)

For the 95% CI, Appendix Table A gives ¢ = 2.16 for 13 df, so the me is 2.16 (2.92) = 6.30 and
the 95% CI = 22.58 4 6.30 = 16.3 to 28.9 publications (rounding). For the 80% CI, the table
gives # = 1.35 for 13 df, so the me = 1.35 (2.92) = 3.94 and the CI is 22.58 +3.94 = 18.6
t0 26.5 publications (rounding). These CIs are uselessly large because of the large SEy , due
mostly in turn to the smallness of the sample.

Confidence Interval for I'xy

The approach we used in generating CIs for Byy and By will not work for ryy because the
sampling distribution for ryy is not symmetrical except when pyy (the population ryy) equals
0. That is, the lower and upper limits for a CI for ryy do not fall at equal distances from
the‘Obtained sample value. The reason for this is that, unlike SEp,, the SE, varies with pyy,
Which s, of course, unknown. To solve this problem, R. A. Fisher developed the z prime ()
transformation of -

(2.8.4) 7 = in(1 +r) —In(1 = ],

Where In is the natural (base e) logarithm. i
- The sampling distribution of 7’ depends only on the sample size aI'ld is nearly normal even
I relatively small values of . The standard error of a sample 2’ is given by

(285
) SEZ' = -—nfg

Appendix Table B gives the r to 7 transformation directly, with no need for computation.

|-
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To find the CI for a sample r, transform the r to z’ and, using the SE, and
multiplier for the size of the CI desired, find the me and then the lower and y ere ?Pl}romate
CI for z'. Then transform them back to . For our academic example, we founq the S of th
years since Ph.D. and number of publications to be .657. In Appendix Table B g I bety,
transformation to be approximately z’ = .79. With n = 15, we find from (2.8.4) thy 2 the

1
SEy =i = 280,
il 4 T

Then, using the multiplier 1.96 from the normal distribution for the 95% limits (Appen)
Table C), we find 1.96(.289) = .57 as the me for , 50 .79 .57 gives the 959 | P

it
as .22 and 1.36. But what we want are the 95% limits for r, so using Appendix Tablz g>rz’
transform these z’ values back to r and obtain r = .22 (from -22) and .88 (from 136 4

). Thus,

we can expect with 95% confidence that the population 7 is included in the approximate ¢y

22 t0 .88. Note that these limits are not symmetrical about the sample r of .657.

The 95% CI for r in this example, .22 to .88, is very wide, as are all the CIs for this sma]j
sample of n = 15.15 The odds of inclusion here are 95 : 5 (that is, 19 to 1). For narrower ang
thus less definitive limits, the 80% CI gives 80 : 20 (4 to 1) odds of inclusion. To find it, we
proceed as before, using the normal curve multiplier for an 80% CI of 1.28 (Appendix Table ),
We first find the confidence limits for 7’ by subtracting and adding the me = 1.28 (:29) = 38
to the sample z’ of .79, obtaining .41 and 1.17. From Appendix Table B we convert Ztorto
find the approximate 80% CI for r to be .39 (from .41) to .82 (from 1.17). This is yet another
object lesson in precision (or, rather, its lack) with small samples. For most purposes, limits
as wide as this would not be of much use.

Confidence Interval for the Difference
Between Regression Coefficients: By, — Byy,,

Given the many uses to which regression coefficients are put, the size of the difference
between a pair of Byy sample values coming from different groups is often a matter of resea@
interest. The SE of the difference between two independent Byy values is a function of their
standard errors, whose formula we repeat here for convenience: :

__sdy il r,z,X
(2.8.1) SEp,, = i
Assume that the sample in Section 2.4 in which we found the regression coefficient deSCﬂfl;fngl
the relationship between time since Ph.D. and number of publications, 1.98, was dr:awnz ;
University V and numbered 62 cases. Substituting the sample values found in Secn;)no e
Eq. (2.8.1), we find its standard error to be .294. Now assume that in a random Sampb:titutiﬂg
cases from University W, we find sdy, = 13.64, sdy, = 3.45, and ry = A430. S%Ol- Now,
these values in Eq. (2.4.3), we find By = 1.70, and in Eq. (2.8.1) we find SEp, = =00 opce
the difference between By and By, is 1.98 — 1.70 = .28. The standard error of the
between the two coefficients is

(2.8.6) SEp, -5, = \/(SEg,)* + (SE5, )*
Substituting, we find

SEp, g, = \/ (:294)% + (.301)? = .42
il

. pased 0P such 3"
13Indeed, it would be foolish to place any serious faith in the adequacy of the estimate
sample, which is employed here only for illustrative purposes.
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Using the multiplier 2 (a reasonable approximation of 1.96) for the 95% CI, we find the me
for the difference between the B values, 2 (42) = .84, and obtain the approximate 95% CI
for By — Bw 88 28 + .84 = —.56 to +1.12. This means that the confidence limits go from
University V’s slope being .56 (about ¥2 of a publication) smaller per year since Ph.D. to being
1.12 (about 1) publication larger. Take particular note of the fact that the 95% CI includes 0.
Thus, we cannot conclude that there is any difference between the universities in the number
of publications change per year since Ph.D. at this level of confidence.

Equation (2.8.6) gives the standard error of the difference between regression coefficients
coming from different populations as the square root of the sum of their squared standard
errors. This property is not unique to regression coefficients but holds for any statistic—means,
standard deviations, and, as we see in the next section, correlation coefficients as well.

Confidence Interval for rxy, — Ixy,

We cannot approach setting confidence limits for differences between rs using the Z’ trans-
formation because of the nonlinear relationship between them—equal distances along the 7
scale do not yield equal distances along the z’ scale (which can be seen in Appendix Table B).

Recent work by Olkin and Finn (1995) has provided relatively simple means for setting
confidence intervals for various functions of correlation coefficients. For large samples, the
difference between ryy in two independent samples, V and W, is normally distributed and is
given approximately by . o

A= o
N
1—-r2 {4+
(2.8.7) SE, _, = ¥ l\ftfw.
\ %4 w nV nw

Returning to the example in which we compared the regression coefficients for our running
problem, we can estimate confidence intervals for the difference between the correlations of
657 for University V (n, = 62) and .430 for University W (ny; = 143). Substituting in

Eq.(2.8.7),
1—.6572  1-—.430
SE, .= + =.122
il 62 A o

The difference between the 7s is .657 — 430 =(.277. Assuming normality, the 95% CI uses
1.96 as the multiplier, so the 95% me is 1.96 (.122) — 239, Then the approximate 95% CI is
277 +.239 = +.04 to +.52. We interpret this to mean that we can be 95% confident that the
Prx of time since Ph.D with number of publications for University V is .04 to .52 larger than
g;atthf()r University W. Note here that the confidence interval of the difference bet_wecn the. rs
coefg t.wo universities does not include 0, but the CI of the difference betwee.n their reg.ressmn
me cients does. This demonstrates that correlation and regression coefficients are different
re asures of the degree of linear relationship between two variables. Later, we will argue that
pog rels Slon coefficients are often more stable across populations, in contrast to rs that reﬂe?t
t 5 2 ?tl,on differences in variability of X. In the preceding example, we saw sdy = 4.58 in
njorlgmll University V and sdy = 3.45 in the comparison University W. The srpaller rin
Yersity W is apparently attributable to their faculty’s constricted range of years sInce Ph.D.

28,
3 Null Hypothesis Significance Tests (NHSTs)

a hypothesis that a population effect size
the investigator. The term “pull” arises
tion that the research data may

Injt
) (I)I;OSI general meaning, a null hypothesis ( Hy) is
om R (Xher. parameter has some value specified by .
- A. Fisher's statistical strategy of formulating a propost

)
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be able to nullify or reject. By far, the most popular null hypothesis that is tested is the &
posits that a population effect size, such as a correlation coefficient or a difference b: © iy
means, is zero, and the adjective “null” takes on the additional meaning of no relaﬁotwe‘f“
or no effect. We prefer to use the term “nil” hypothesis to characterize such prop()siﬁo:shl
reasons that will become clear later (J. Cohen, 1994). S for

The Nil Hypothesis Test for Byx

In our running example of the 15 faculty members, we found that the regression coefficiy
for the number of publications on number of years since Ph.D. was 1.98 (= Byy), which meapg
that, on the average in this sample, each additional year since Ph.D. was associated with aboyt
two publications. The standard error of the coefficient (SEg, ) from Eq. (2.8.1) was .63,
Let’s perform a ¢ test of the nil hypothesis that in the population, each additional year since
Ph.D. is associated on the average with no additional publications, that is, that there is no
linear relationship between years since Ph.D. and publications. We will perform this test at the
p < .05 (=) significance level. The general form of the ¢ test is

s sample value — null-hypothetical value

2.8.8
( : standard error

which, for regression coefficients, is

(289) = M
SEg,,
Substituting,
i 1.98 -0 iy
T oiGe) e

which, for df = n — 2 = 13 readily meets the @ = .05 significance criterion of ¢ = 216
(Appendix Table A). We accordingly reject Hy and conclude that there is a greater than 7610
relationship between years since Ph.D. and number of publications in the population. N(?te,
however, that neither the size nor the statistical significance of the ¢ value provides information
about the magnitude of the relationship. Recall, however, that when we first encountered c
SEs,, at the beginning of Section 2.8.2, we found the 95% CI for Byx to be +.62 10 1274
which does provide a magnitude estimate. Moreover, note that the 95% CI does not include 0.
After we have determined a CI for Byy, a ¢ test of the nil hypothesis for Byx is unﬂec"’ss.ary 5
once we have a CI that does not include 0, we know that the nil hypothesis can be “”Jeaca
at that significance level (here, a = .05). However, if the only relevant information abott d
population difference is whether it has some specified value, or whether it exists at &% i
there are circumstances when that is the case, then CIs are unnecessary and a null hypothe
test is in order. o that

For example, assume that we wish to test the proposition as a non-nil null hypotheSIfatioﬂ
the population regression coefficient is 2.5 publications per year since Ph.D.: Ho: PO u/ 82,
Byx = 2.5. We can proceed as before with Eq. (2.8.9) to find ¢ = (.98~ 2.5)/ 632 '/m'the
which is not significant at @ = .05, and we can conclude that our results aré consistent WInt ins
possibility that the population value is 2.5. But since the 95% CI (+.62 t0 +3.34) 0 ing
the null-hypothetical value of 2.5, we can draw the same conclusion. Howeveh y 5, Not
the 95% CI we have the range of Byy values for which the H, cannot be rejected 3t = hink
only 2.5 or 0, but any value in that range cannot be rejected as a Hy. Therefore, 00° Iﬂgah Hy
of a CI as a range of values within which the H;, cannot be rejected and outside Of ¥ NHST'
can be rejected on the basis of this estimate. The CI yields more information tha? e

el
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The Null Hypothesis Test for B,

In the previous section, we found the ¥ intercept for our running example By = 4.73 and,
using its standard error (Eq. 2.8.2), found SEp, = 5.59. We can perform a ¢ test for 13 df of
the H,, that the population intercept equals 0 in the usual fashion. Using Eq. (2.8.7) for By and
substituting in Eq. (2.8.7), we find

_473-0
i 2.5.59

which fails to meet conventional significance criteria. (In Section 2.8.2 we found 95% and
80% ClIs, both of which included 0.)

= .85,

The Null Hypothesis Test for ry,

When pyy (the population ryy) = 0, the use of the Fisher 7’ transformation is unnecessary.
The ¢ test of the nil hypothesis for ryy, Hy: pxy = 0, is

(2.8.10) g MBS 2 i df =n—2.
l—r,zﬂ,

Returning to our running example, the ryy between years since Ph.D. and publications for the
sample of 15 faculty members was .657. Substituting,

,_ 851Y15 2
V1657

The a = .05 significance criterion for ¢ with 13 df is 2.16, readily exceeded by 3.14..We
conclude that pyy, # 0. (The 95% CI was found via the Fisher z’ transformation in the previous
section to be .22 to .88.)

=3.14.

The Null Hypothesis Test for the Difference
Between Two Correlations with Y : rxy, — rIxy,,
In Section 2.8.2 we presented a method for setting approximate confidence intervals for

differences between independent rs suitable for large samples. For an approximate nil'hypoth-
esis test, suitable for samples of any size, we again resort to the Fisher 7 transformation. The

relevant data for the two universities are

University N ryy 2z
\ 62 .657 .79
w 143 430 .46

To test the H, that the difference between the population correlation$ py — pw = 0, we
test the equivalent Hy : 7y, — 7y = 0 by computing the normal curve deviate

(2.8.11) i &~ 2w :
¢= oy =3 + Y = 3)

Substituting,

_ 79 — 46 _ 213,
T JIJ(62=3) +1/(143-3)

Z
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which exceeds 1.96, the two-tailed o = .05 signiﬁcan.ce cr.iterion for the normg) s
(see Appendix Table C), and we can conclude that University V’s pyy is probably largerutl(,n
University W’s. The reason that we can test for z’s and conclude about Ps is that theth-
a one-to-one correspondence between z’ and p so that when the 7z’s are not equal, the p;e is
necessarily also not equal. (The 95% CI for the difference between the rs was pre

Viously foung
to be +.04 to +.52.)

2.8.4 Confidence Limits and Null Hypothesis Significance Testing

For more than half a century, NHST has dominated statistical inference in its applicatjop in
the social, biological, and medical sciences, and for just as long, it has been subject to severe
criticism by methodologists including Berkson (1946), Yates (1951), Rozeboom (1960), Meeh)
(1967), Lykken (1968), and Tukey (1969), among others. More recently, many methodologiss,
including J. Cohen (1990, 1994) and a committee of the American Psychological Associatioy
(Wilkinson of the APA Task Force on Statistical Inference, 1999), among others, have inveigheq
against the excessive use and abuse of NHST.

We have seen repeatedly that when confidence intervals on statistics or effect sizes are
available, they include the information provided by null hypothesis tests. However, there may
be auseful role for NHST in cases where the direction of systematic differences is of much more
interest than their magnitude and the information provided by confidence intervals may simply
be distracting (Harlow, Mulaik, & Steiger, 1997). In addition, as we will see in subsequent
chapters, significance tests are useful guides to the decision as to whether certain variables
are or are not needed for the explanation of Y. Abelson (1995) notes the usefulness of NHST

in making categorical claims that add to the background substantive scientific lore in a field
under study.

2.9 PRECISION AND POWER

For research results to be useful, they must be accurate or, at least, their degree of accuracy must
be determinable. In the preceding material, we have seen how to estimate regression parametefs
and test null hypothesis after the sample data have been collected. However, we can plan ©0

determine the degree of precision of the estimation of parameters or of the probability of nul
hypothesis rejection that we shall be able to achieve.

2.9.1 Precision of Estimation

The point estimate of a population parameter such as a population B or p is the valu® o{l the
statistic (B, r) in the sample. The margin of error in estimation is the product of the stat The
error and its multiplier for the degree of inclusion (95%, 80%) of the confidence interval ize
standard error is a function of the sample size, n. We show how to estimate n, the S“.mpl;f; 2.
necessary to achieve the desired degree of precision of the statistics covered in Sectio? nﬁ“

We begin by drawing a trial sample of the data for whose statistics we wish 0 dete ial
CIs. The sample of n = 15 cases we have been working with is much too small to US¢ af sztilSs
sample, so let’s assume that it had 50 rather than 15 cases so that we can use the sam°45 E;Sn and
;sEl;ff?or;e.IA(/)I.,gz-.- 1.67, sdy = 4.58, sdy = 13.82, rxy = .657, Byy = 1.98, B0 =

We use the approximate multipliers (¢, z) of the standard errors to determine the 11
of the confidence limits: 99%, 2.6; 95%, 2; 80%, 1.3; and 68%, 1. The standard error®
regression/correlation statistics of our n = 50 sample are as foflOWSI

clusio®
for the

o
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Estimated Byx
13.82 [1 - .6572
Eq. (28.1) SEpy = 1 5g J e
Estimated intercept
8.2) SEj = 1082 | = + L LS
S B = 007450 T (50— 1)(20.95)

Estimated value of y for a case where X = 9

: 1 © — 7.67)
% e s GO T isg
Eq. (2.8.3) y, = 10.82 \[50 * 50 = 1)(20.95)
Estimated ryy
1
Eq. (2.8.5 SEy = ——= =146
:(2.8:9) ? = /503

Estimated difference between B in two populations

Eq. (2.8.6) SEp, 5, = V3207 + 3292 = +/2165 = .465.

Estimated difference between r’s in two large samples from different populations

Eq. (2.8.7) SE

Tv—Tw

2ol z 09T 1o 0 /51156 01630 1166
50 50

The SE is inversely proportional to /7 to a sufficient approximation when 7 is not small.
Quadrupling n cuts SE approximately in half. To make a standard error x times as large as
that for n = 50, compute nx = n/x?, where n* is the necessary sample size to attain x times
the SE. For example, we found SEg,, = .329 for our sample of n = 50 cases. To make it half
(5) as large, we would need nx = 50/.5% = 200.

To change a standard error from SE to SEx, find n = n(SE/ SEx)?. For example, to change
the SEg,, from .329 (for n = 50) to SEx = .20, we would need nx = 50 (.329/.20)* = 135
cases.

For differences between Bs and rs, use their statistics from the trials to determine the desired
changes in the SEs for the two samples and compute the anticipated SE of the difference
(Egs. 2.8.6 and 2.8.7). Adjust the ns as necessary.

2.9.2 Power of Null Hypothesis Significance Tests

In.secﬁoﬂ 2.8.3, we presented methods of appraising sample data in regard to «, the ris.k. of

nnstakeply rejecting the null hypothesis when it is true, that is, drawing a spuriously positive

°°nc1u§10n (Type I error). We now turn our attention to methods of determining B,'® the

svfﬁibab.ﬂity of failing to reject the null hypothesis when it is false (Type II error), and ways in
ch it can be controlled in research planning.

e

5 g :
for ¢ Wehave been using f to represent the standardized regression coefficient. Itis used here with a different meaning
onsistency with the literature.

| -
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Any given test of a null hypothesis is a complex relationship among the f0110win
parameters: § four

1. The power of the test, the probability of rejecting Hy, defined as 1 — B,

2. The region of rejection of Hj as determined by the o level and whether
one-tailed or two-tailed. As a increases, for example from .01 to .05, power

3. The sample size n. As n increases, power increases.

4. The magnitude of the effect in the population, or the degree of departure fro
larger this is, the greater the power.

'the test is
mcreaSes :

m Hy. The

These four parameters are so related that when any three of them are fixed, the fourth
is completely determined. Thus, when an investigator decides for a given research plan the
significance criterion o and n, the power of the test is determined. However, the investigator
does not know what this power is without also knowing the magnitude of the effect size (ES)
in the population, the estimation of which is the whole purpose of the study. The methods
presented here focus on the standardized effect size, r in the present case.

There are three general strategies for estimating the size of the standardized population
effect a researcher is trying to detect as “statistically significant:

1. To the extent that studies have been carried out by the current investigator or others
which are closely similar to the present investigation, the ESs found in these studies reflect the
magnitude that can be expected. Thus, if a review of the relevant literature reveals rs ranging
from .32 to .43, the population ES in the current study may be expected to be somewhere in the
vicinity of these values. Investigators who wish to be conservative may determine the power
to detect a population p of .25 or .30.

2. In some research areas an investigator may posit some minimum population effect size
that would have either practical or theoretical significance. An investigator may determine
that unless p = .05, the importance of the relationship is insufficient to warrant a change
in the policy or operations of the relevant institution. Another investigator may decide that
a population correlation of .10 would have a material import for the adequacy of the tpeory
within which the experiment has been designed, and thus would wish to plan the experiment
so as to detect such an ES. Or a magnitude of Byy that would be substantively important may
be determined and other parameters estimated from other sources to translate By into -

3. A third strategy in deciding what ES values to use in determining the power of a study
is to use certain suggested conventional definitions of small, medium, and large effects SZS
population p = .10, .30, and .50, respectively (J. Cohen, 1988). These conventional fh e;
derived from the average values in published studies in the social sciences, may be used el ¥
by choosing one of these values (for example, the conventional medium ES of 30) by rato
determining power for all three populations. If the latter strategy is chosen, the investig ous
would then revise the research plan according to an estimation of the relevance of the' var:)nly
ESs to the substantive problem. This option should be looked upon as the default option
if the earlier noted strategies are not feasible.

tlll'ns
The point of doing a power analysis of a given research plan is that when the power

the
out to be insufficient the investigator may decide to revise these plans, or even d:(;p be
investigation entirely if such revision is impossible. Obviously, because little of nOt,hmg yalve
done after the investigation is completed, determination of statistical power is of pri® be
as a preinvestigation procedure. If power is found to be insufficient, the research pla? jevels
revised in ways that will increase it, primarily by increasing n, or increasing the n“mbereogenef”l
or variability of the independent variable, or possibly by increasing o.. A more complet 1965
discussion of the concepts and strategy of power analysis may be found in 1.C
1988). It is particularly useful to use a computerized program for calculating the 8
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power of a proposed research plan, because such a prograni will provide a graphic depiction
of the effect of each of the parameters (ES, n, o) on the resulting power to reject a false null
hypothesis. :

2.10 FACTORS AFFECTING THE SIZE OF r

2.10.1 The Distributions of X and V¥

Because r = 1.00 only when each zy = zy, it can only occur when the shapes of the frequency
distributions for X and Y are exactly the same (or exactly opposite for r = —1.00). The
greater the departure from distribution similarity, the more severe will the restriction be on the
maximum possible r. In addition, as such distribution discrepancy increases, departure from
homoscedasticity—equal error for different predicted values—must also necessarily increase.
The decrease in the maximum possible value of (positive) r is especially noticeable under
circumstances in which the two variables are skewed in opposite directions. One such common
circumstance occurs when the two variables being correlated are each dichotomies: With very
discrepant proportions, it is not possible to obtain a large positive correlation.

For example, suppose that a group of subjects has been classified into “risk takers” and
“safe players” on the basis of behavior in an experiment, resulting in 90 risk takers and 10 safe
players. A correlation is computed between this dichotomous variable and self classification
as “conservative” versus “liberal” in a political sense, with 60 of the 100 subjects identifying
themselves as conservative (Table 2.10.1). Even if all political liberals were also risk takers in
the experimental situation, the correlation will be only (by Eq. 2.3.6):

400—-0

r¢=
4/90-10-40-60

= .272.

It is useful to divide the issue of the distribution of variables into two components, those
due to differences in the distribution of the underlying constructs and those due to the scales on
which we have happened to measure our variables. Constraints on correlations associated with
differences in distribution inherent in the constructs are not artifacts, but have real interpretive
meaning, For example, gender and height for American adults are not perfectly correlated, but
We need have no concern about an artificial upper limit on r attributable to this distribution
difference. If gender completely determined height, there would only be two heights, one for
men and one for women, and r would be 1.00.

TABLE 2.10.1
Bivariate Distribution of Experimental and Self-Reported
Conservative Tendency

Experimental

Risk takers  Safe players  Total:

Self-report | Liberal 40 0 40
Conservative 50 10 60
Total: 90 10 100
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Similarly the observed correlation between smok'mg_ and lung cancer i§ about . 1( (esti
from figures provided by Doll & Peto, 1981). There is no artifact of dl.sm'bution here. o
though the risk of cancer is about 11 times as high for smokers, the vast majority of by, ok 1
and nonsmokers alike will not contract lung cancer, and the relationship % ﬂ::
nonassociation in these many cases.

Whenever the concept underlying the measure is logically continuous or quantitatiyel?__
in the preceding example of risk taking and liberal versus conservative—it is highly desirabie,
measure the variables on a many-valued scale. One effect of this will be to increase the o por
tunity for reliable and valid discrimination of individual differences (see Section 2, 10.2). Toghe
extent that the measures are similarly distributed, the risk of underestimating the relationship
between the conceptual variables will be reduced (see Chapter 4). How

ever, the COnstraintg
on r due to unreliability are likely to be much more serious than those due to distributig,
differences on multivalued scales.

is low becayg

The Biserial r

When the only available measure of some construct X is a dichotomy, dy,

an investigator
may wish to know what the correlation would be between the underlying construct and some
other quantitative variable, Y. For exam

ple, X may be ability to learn algebra, which we
measure by dy, pass—fail. If one can assume that the “underlying” continuous variable X is

normally distributed, and that the relationship with Y is linear, an estimate of the correlation

between X and Y can be made, even though only dy and Y are available. This correlation is
estimated as

My, — My )P

where M v, and M. v, are the Y means for the two points of the dichotomy, P and Q (=1-P)are

the proportions of the sample at these two points, and / is the ordinate (height) of the standard

unit normal curve at the point at which its area is divided into P and Q portions (see Appendix
Table C).

For example, we will return to
to be —.707. We now take the dic

g (66 — 69.5)(.428)(.572) o

392(2.45) =i i
where .392 is the height of the ordinate at the 428, 57 breal, found by linear interP*"
in Appendix Table C and oy = —.707.

the Y scores of the two

groups, the r, will be gt least 1
than the corresponding

g 5%
e ) .0. It will be approximately f]l et
pb €n the

reak on X is .50 — 50, The ratio of r,/Tps ¥
\

is

"7 Continuous implies iabl tive OF Scalzan;

a variable on which infin; istinet: ; titatt :

more closely aligned to reg] .nﬁ'rutely small distinctions can be made; quan ariabl® ff‘u e
Measurement practice in the behaviora] sciences, implying an ordered ¥ o ¥

or at least several possible values, Th, i i B
leas ; - Lheoretical constructg i thedr 12
quantitative in this senge, e e
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as the break on X is more extreme; for example with a break of .90 — 10, r, will be about
two-thirds larger than ry;.

Confidence hmlts. are best estabhs}}ed on 7,5 or, equivalently, on the difference between the
Y means corresponding to the two points of dy.

Tetrachoric r

As we have seen, when the relationship between two dichotomies is investigated, the restric-
tion on the maximum value of r, when their breaks are very different can be very severe. Once
again, we can make an estimate of what the linear correlation would be if the two variables
were continuous and normally distributed. Such an estimate is called the tetrachoric correla-
tion. Because the formula for the tetrachoric correlation involves an infinite series and even a
good approximation is a laborious operation, tetrachoric rs are obtained by means of computer
programs. Tetrachoric r will be larger than the corresponding phi coefficient and the issues
governing their interpretation and use are the same as for r, and Bhe

Caution should be exercised in the use of biserial and tetrachoric correlations, particularly in
multivariate analyses. Remember that they are not observed correlations in the data, but rather
hypothetical ones depending on the normality of the distributions underlying the dichotomies.
Nor will standard errors for the estimated coefficients be the same as those for the product
moment coefficients presented here.

2.10.2 The Reliability of the Variables

In most research in the behavioral sciences, the concepts that are of ultimate interest and that
form the theoretical foundation for the study are only indirectly and imperfectly measured
in practice. Thus, typically, interpretations of the correlations between variables as measured
should be carefully distinguished from the relationship between the constructs or conceptual
variables found in the theory. :

The reliability of a variable (ryx) may be defined as the correlation between the vanab}e
as measured and another equivalent measure of the same variable. In standard psychomegnc
theory, the square root of the reliability coefficient ,/7xy may be interpreted as the co,1:relat10n
between the variable as measured by the instrument or test at hand and the.“n'ue (error-
free) score. Because true scores are not themselves observable, a series of techniques has been
developed to estimate the correlation between the obtained scores and these @ypOmCUCﬂ) true
Scores. These techniques may be based on correlations among items, betweenitems agd the total
Score, between other subdivisions of the measuring instrument, or between alternative flon-ns.

€y yield a reliability coefficient that is an estimate (based on a sample) of the PﬁPt‘:l at:;‘:
teliability coefficient.!8 This coefficient may be interpreted as an index of h9w weh u;ed -
x Measurement procedure measures whatever it is that it measures. This 1s§1u€£h i rowhat it
distinguished from the question of the test’s validity, that is, the question of whe

TIeasures is what the investigator intends that it measure. e eliability of 1.00
ey discrepancy between an obtained reliability coefficient and 2 P‘Zfi eore may be thought
2 index of the relative amount of measurement error. Each observed s¢

% composed of some true value plus a certain amount of error:

210.2) X = X b X

I be made here to descri

8 .
Orey, Becausa this is a whole field of study in its own right, no effort will ! information g
°‘llllhe theory behing the techniques, in any detail. Excellent sources of suchin
"ally & Bernstein (1993),

be any of its techniques,
tude McDonald ( 1999)
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These error components are assumed to have a mean of zero and to correlate zerg y;
true scores and with true or error scores on other measures. Measurement errors m, ith
from a variety of sources, such as errors in sampling the domain of content, errors in rez(,m.me
or coding, errors introduced by grouping or an insufficiently fine system of measurerdm
errors associated with uncontrolled aspects of the conditions under which the test wag nilent,
errors due to short- or long-term fluctuation in individuals’ true scores, errors due tgo"::;n,
(idiosyncratic) influence of other variables on the individuals’ responses, etc. <

For the entire set of scores, the reliability coefficient equals the proportion of the obseryeg

score variable that is true score variance
(2.10.3) i
. . T —
% sd)zf

Because, as we have stated, error scores are assumed not to correlate with anything, ry, may
also be interpreted as that proportion of the measure’s variance that is available to correlate
with other measures. Therefore, the correlation between the observed scores (X and ) for
any two variables will be pumerically smaller than the correlation between their respective

unobservable true scores (X, and Y,). Specifically,
(2.10.4) rxy = Txy,NTxxTvy-

Researchers sometimes wish to estimate the correlations between two theoretical constructs
from the correlations obtained between the imperfect observed measures of these constructs.
To do so, one corrects for attenuation (unreliability) by dividing rxy by the square root of the
f the reliabilities (the maximum possible correlation between the imperfect measures).

producto

From Eq. (2.10.4),

(2.10.5) g iy
g rxxTyy

Thus, if two variables, each with a reliability of .80, were found to correlate .44,
44

XY, = oo

+/(.80)(.80)

Although correlations are subject to attenuation due to unreliability in

ables, bivariate regression coefficients are not affected by unreliability in Y. This can be see?

from the following, where we consider unreliability only in Y. The regression Co‘?ﬁicient
expressed as the relationship between the perfectly reliable variables [by Eq. 24338

either or both V&%

(2.10.6) iy <Sd_Y>
il w\ sdy,

By Eq. (2.10.5), when ryy = 1.0, ryy = rxy,/Tyy- By Eq. (2.10.3),

r =—il§'— and sdy = /sd% + sd?
T sd + sd} ARG

so

Ixy de'

rXY, == and r =T —_—
5 /(s, + s ) ot m
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Therefore, using Eq. (2.4.3) where Byy = ryy(sdy/sdy), substituting:

P sdy, /593, + sdi,
=03y
/543, + sdy, sdy

and canceling

=7 .Sd_Y‘ — B
XY, de YX

As is generally true for coefficients based on a series of estimates, caution must be used
in interpreting attenuation-corrected coefficients, because each of the coefficients used in the
equation is subject to sampling error (as well as model assumption failure). Indeed, it is
even possible to obtain attenuation-corrected correlations larger than 1.0 when the reliabilities
come from different populations than ryy, are underestimated, or when the assumption of
uncorrelated error is false. Obviously, because the disattenuated r is hypothetical rather than
based on real data, its confidence limits are likely to be very large.!

To reiterate, unreliability in variables as classically defined is a sufficient reason for low
correlations; it cannot cause correlations to be spuriously high. Spuriously high correlations
may, of course, be found when sources of bias are shared by variables, as can happen when
observations are not “blind,” when subtle selection factors are operating to determine which
cases can and cannot appear in the sample studied, and for yet other reasons.

2.10.3 Restriction of Range

A problem related to the question of reliability occurs under conditions when the range of one
or both variables is restricted by the sampling procedure. For example, suppose that in the data J
presented in Table 2.2.2 and analyzed in Table 2.6.1 we had restricted ourselves to the study CHOZEX0°
of faculty members who were less extreme with regard to years since Ph.D., occupying the
restricted range of 5 to 11 years rather than the full range of 3 to 18 years. If the relationship
is well described by a straight line and homoscedastic, we shall find that the variance of the Y
Scores about the regression line, sd%_j, remains about the same. Because when r # 0, sd} will

be decreased as an incidental result of the reduction of sd, and because sdy = sd%, + sd?_y,

the proportion of sd? associated with X, namely, sd%,, will necessarily be smaller, and therefore,
(= Sd%,/ sd%) and r will be smaller. In the current example, 7 decreases from .657 to .388, and
%, the proportion of variance, from .432 to .151. (See Table 2.10.2.) When the relationship _is
completely linear, the regression coefficient, By, will remain constant because the decrease in
rwill be perfectly offset by the increase in the ratio sdy /sdy. It is 2.456 here, compared to 1 983
before, (It increased slightly in this example, but could just as readily have decreased shgptly.)
The fact that regression coefficients tend to remain constant over changes in the variability of
X (providing the relationship is fully linear and the sample size sufficiently large to produce
T€asonable estimates) is an important property of regression coefficients. It is sho.wn la.ter how

$ makes them more useful as measures of relationship than correlation coefficients in some
Analytic contexts (Chapter 5).

x

1 ’ , ¢ sl g,
?Current practice is most likely to test “disattenuated” coefficients via latent variable models (described in
€clion 12.5.4), although the definition and estimation is somewhat different from the reasoning presented here.

;“, , ey L
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TABLE 2.10.2
Correlation and Regression of Number of Publications
on a Restricted Range of Time Since Ph.D.

Publications Time since Ph.D.

Y X
3 6
17 8
11 9
6 6 ryy = .388 (.657)2
48 10
22 5 r}(y =.150 (.431)
30 5
21 6 sdy_y = 11.10 (10.42)
10 7
271 11 Byy = 2.456 (1.983)
M 19.50 7.30
sd 12.04 1.31
sd? 144.94 1.71

“Parenthetic values are those for the original (i.e., unrestricted) sample.

Suppose that an estimate of the correlation that would be obtained from the full range is
desired, when the available data have a curtailed or restricted range for X. If we know the sdy
of the unrestricted X distribution as well as the sdy_ for the curtailed sample and the correlation
between Y and X in the curtailed sample (rx.y), we may estimate ryy by

(2.10.7) =3 ryx (sdy /sdx.)

\/1 + rix, ((sd,z(/sdffc) - 1)

For example, r = .25 is obtained on a sample for which sdy = 5 whereas the sdy of ﬂl.e
population in which the investigator is interested is estimated fo be 12. Situations like this
occur, for example, when some selection procedure such as an aptitude test has been “_Sed tg
select personnel and those selected are later assessed on a criterion measure. If the findiné ®

the restricted (employed) sample is projected to the whole group originally tested, xy it
be estimated to be

% 25(12/5) .60

rXY = > —
V1+252[12/5% —1] /12975
is lined

. . 1 i 1
It should be e’_“PhaS{Zed ﬂ_‘at .53 is an estimate and assumes that the relationshiP * jimnits
and homoscedastic, which might not be the ca

on this estimate,
It is quite possible that restriction of

. nce
se. There are no appropriate confid®

cur 8 %
st range in either X or ¥, or both, may study ©
incidental by-product of the sampling procedure. Therefore, it is important in 3% Jinea®
report the sds of the variables used. Because under conditions of homoscedasticity and s

. . i amp
regression coefficients are not affected by range restriction, comparisons of d‘fferentﬂ:ef the?
using the Same variables should usually be done on the regression coefficients ™ e
on the correlation coefficients when sd

(4¢
s differ. Investi are, BOWEY" s
% : er. Investigators should be aw relat!
€ questions answered by these comparisons are not the same. Comparisons Of ¢

4
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answer the question, Does X account for as much of the variance in Y in group E and in
Group F? Comparisons of regression coefficients answer the question, Does a change in X
make the same amount of score difference in Y in group E as it does in group F?

Although the previous discussion has been cast in terms of restriction in range, an inves-
tigator may be interested in the reverse—the sample in hand has a range of X values that is
large relative to the population of interest. This could happen, for example, if the sampling
procedure was such as to include disproportionately more high- and low-X cases and fewer
middle values. Equation (2.10.7) can be employed to estimate the correlation in the population
of interest (whose range in X is less) by reinterpreting the subscript C in the equation to mean
changed (including increased) rather than curtailed. Thus, ryy. and sdy, are the “too large”
values in the sample, sdy is the (smaller) sd of the population of interest, and the estimated
r in that population will be smaller. Note that the ratio sdy/sdy,, which before was greater
than one, is now smaller than one. Because the correlation (the ES) will be higher in a sample
with a larger sd, sampling in order to produce a larger sd, as in studies in which the number
of “cases” is larger than in a random sample of the general population, is a major strategy for
increasing the statistical power of a study.

2.10.4 Part-Whole Correlations

Occasionally we will find that a correlation has been computed between some variable J and
another variable W, which is the sum of scores on a set of variables including J. Under these
circumstances a positive correlation can be expected between J and W due to the fact that W
includes J, even when there is no correlation between J and W — J. For example, if k test
items of equal sd and zero r with each other are added together, each of the items will correlate
exactly 1/./k with the total score. For the two-item case, therefore, each item would correlate
707 with their sum, W, when neither correlates with the other. On the same assumptions
of zero correlation between the variables but with unequal sds, the variables are effectively
weighted by their differing sd; and the correlation of J with W will be equal to sd;/~/ Zsd?,
where sds are summed over the items. Obviously, under these circumstances 7wy = 0.In
the more common case where the variables or items are correlated, the correlation of J with

W — J may be obtained by

rywsdy — sdy

(2.10.8) T =
sd?, + sd? — 2rpysdysd;

This .is not an estimate and may be tested via the usual # test for the significance of .

Given these often substantial spurious correlations between elements and totals including
the elements, it behooves the investigator to determine 7y ), Or at the very least determine the
expected value when the elements are uncorrelated before interpreting ryy. Sucha circumstance
oftex.l occurs when the interest is in the correlation of a single item with a composite that includes
that item, as is carried out in psychometric analysis.

Change Scores

. Itis not necessary that the parts be literally added in order to produce such spurious correla-
on. If a subscore is subtracted, a spurious negative component in the correlation will also be
Eiﬁ?llced. One common use of such difference scores in the social sciences in the use of post-
postltl:epretreatment (change) scores. If such change scores aré .correl.ated with the pre- and
it atment scores from which they have been obtained, we will typically find that subjects

y low on X will have larger gains than those initially high on X, and that those with the
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highest final scores will have made greater gains than those with lower final scoreg. Again
dg = sd, and 7o post = O the 7pre change = —.707 and 7post change = +.707. AlthOUgh'

: ptr;l_ weosvtvould gr;;ect the correlation between pre- and .POSttreaﬁment SCOres to b g,

;ngIslitive, value. it will be limited by their respective reliabilities (Section 2.10.2) as we]| 5, by
indivi i in true change. ,

individual differences 1n le has been created in order to control for differenceg i

. ab

If the post- minus pretreatment varial '
pretreatment scores, the resulting negative correlations between pretreatment and change Scoreg
may be taken as a failure to remove all influence of pretreatment scores from POstireatmey;
scores. This reflects the regression

consequent interpretive risks. The optim

to the mean phenomenon discussed in Section 2.5 apg the
al methods of handling this and related problemg i
the subject of a whole literature (Collins & Homn, 1993) and cannot b.e readily summarizeq
However, the appropriate analysis, as always, depends on the underlying causal mode]. (See
Chapters 5, 12, and 15 for further discussion of this problem.)

2.10.5 Ratio or Index Variables

Ratio (index or rate) scores are those constructed by dividing one variable by another. When
a ratio score is correlated with another variable or with another ratio score, the resulting corre-
lation depends as much on the denominator of the score as it does on the numerator. Because it
is usually the investigator’s intent to “take the denominator into account” it may not be imme-
diately obvious that the correlations obtained between ratio scores may be spurious—that s,
may be a consequence of mathematical necessities that have no valid interpretive use. Ratio
correlations depend, in part, upon the correlations between all numerator and denominator
terms, so that 7,7y is a function of ry; and ry; as well as of ryy, and r(y;zyx/w) depends
on ryy and ry; as well as on the other four correlations. These correlations also involve the
coefficients of variation

d
vX = s._x

My
of each of the variables. Although the following formula is only a fair approximation of
the correlation between ratio scores (requiring normal distributions and homoscedasticl

and dropping all terms involving powers of v greater than v?), it serves to demonstrate the
dependence of correlations between ratios on all vs and on rs between all variable pairs:

(2.10.9)

(2.10.10) r(Y/Z) (X/W) = "y VyVx — r'ywVyVw — rxzVxVz — zwVz'W

2 4 .2
Vy +vz —2r YZVYVZ\/ V2 + Vi, — 2rgwVxVw

rio::]:;z?r 2111: ﬁt(\:;c; fbatlos being correlated have a common denominator, the possibility G sl?;r
e e ei:iomes apparent. Under these circumstances, the approximate formula
three variabl implifies, because Z = W. If a1 coefficients of variation are equal 2
€S are uncorrelated we will find r R
w/zxx/2) ~ -50.

Because : C
the coefficient of variation depends on the value of the mean, it i cledl

Whenever this valye j i o
§ arbitrary, as it is fo i e
arbitrary. Thus, ratiog should not be b ity ot adonar 1

: corre . . ra
a scale for which a zerg value me lated unless each variable is measured on 2)
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proportions. Rates or proportions are frequently used in ecological or epidemiological studies
where the units of analysis are aggregates of people or areas such as counties or census tracts.
In such studies, the numerator represents the incidence or prevalence of some phenomenon
and the denominator represents the population at risk. For example, a delinquency rate may be
calculated by dividing the number of delinquent boys ages 14-16 in a county by the total num-
ber of boys ages 14-16 in the county. This variable may be correlated across the counties in a
region with the proportion of families whose incomes are below the poverty level, another rate.
Because, in general, the denominators of these two rates will reflect the populations of the coun-
ties, which may vary greatly, they can be expected to be substantially correlated. In other cases
the denominators may actually be the same—as, for example, in an investigation of the rela-
tionship between delinquency rates and school dropout rates for a given age-gender group. The
investigator will typically find that these rates have characteristics that minimize the problem
of spurious correlation. In most real data, the coefficients of variation of the numerators will be
substantially larger than the coefficients of variation of the denominators, and thus the correla-
tion between rates will be determined substantially by the correlation between the numerators.
Even in such data, however, the resulting proportions may not be optimal for the purpose of
linear correlation. Chapter 6 discusses some nonlinear transformations of proportions, which
may be more appropriate for analysis than the raw proportions or rates themselves.

Experimentally produced rates may be more subject to problems of spurious correlation,
especially when there are logically alternative denominators. The investigator should deter-
mine that the correlation between the numerator and denominator is very high (and positive),
because in general the absence of such a correlation suggests a faulty logic in the study. In
the absence of a large correlation, the coefficients of variation of the numerator should be
substantially larger than that of the denominator if the problem of spurious correlation is to be
minimized.

Other Ratio Scores

When the numerator does not represent some subclass of the denominator class, the risks
involved in using ratios are even more serious, because the likelihood of small or zero corre-
lations between numerators and denominators and relatively similar values of v is greater. If
the variables do not have true zeros and equal intervals, correlations involving ratios should
probably be avoided altogether, and an alternative method for removing the influence of Z
from X or Y should be chosen, as presented in Chapters 3 and 12.

The difficulties that may be encountered in correlations involving rates and ratios may
be illustrated by the following example. An investigator wishes to determine the relationship
between visual scanning and errors on a digit-symbol (d-s) task. All subjects are given 4 minutes
to work on the task. Because subjects who complete more d-s substitutions have a greater
opportunity to make errors, the experimenter decides, reasonably enough, to determine the
error rate by dividing the number of errors by the number of d-s substitutions completed.
Table 2.10.3 displays the data for 10 subjects. Contrary to expectation, subjects who completed
more d-s tasks did not tend to produce more errors (rzx = —.105), nor did they scan notably
more than did low scorers (rzy = .023). Nevertheless, when the two ratio scores are computed,
they show a substantial positive correlation (.427) in spite of the fact that the numerators showed
slight negative correlation (—.149), nor is there any tendency for scanning and errors to be
correlated for any given level of d-s task completion. Thus, because rzz = 1, the rx;zyy/2)
may here be seen to be an example of spurious correlation.?’

G S

20An alternative method of taking into account the number completed in considering the relationship between
errors and number of scans might be to partial Z (see subsequent chapters).

‘ e ————————
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TABLE 2.10.3
An Example of Spurious Correlation Between Ratios

No. completed

d-s tasks No. errors No. scans Errorrate  Scan rate

Subject ) 0.9] (0] X/z) (Y/2)
1 25 5 24 20 .96
2 29 3 30 .10 1.03
3 30 3 27 .10 .90
4 32 4 30 12 94
5 37 3 18 .08 49
6 41 2 33 .05 .80
7 41 3 27 .07 .66
8 42 5 21 12 .50
9 43 3 24 .07 .56
10 43 5 33 12 77

rzx = —105, rzy = .106, Iyy = —.149

a2y z) = 427

2.10.6 Curvilinear Relationships

When the relationship between the two variables is only moderately well fitted by a straight
line, the correlation coefficient that indicates the degree of linear relationship will understate the
predictability from one variable to the other. Frequently the relationship, although curvilinear,
is monotonic; that is, increases in Z are accompanied by increases (or decreases) in Y, although
not at a constant rate. Under these circumstances, some (nonlinear) monotonic transformation
of X or Y or both may straighten out the regression line and provide a better indication of
the size of the relationship between the two variables (an absolutely larger ). Because there
are several alternative ways of detecting and handling curvilinear relationships, the reader .
referred to Chapters 4 and 6 for a detailed treatment of the issues.

2.11 SUMMARY

A h'near relati'onship exists between two quantitative variables when there is an overall tenden)
for Increases in the value of one variable to be accompanied by increases in the other varia
(a positive relationship), or for increases in the first to be accompanied by decreases in 0°
second (a negative relationship); (Section 2. 1). Efforts to index the (fe ree of linear relatio™
between two variables must cope with the problem of the different ungits in which variables
pleasured. Stan.dard (@) Scores are a conversion of scores into distances from their 0! meaﬂcs;
;?1 ::na:;af;i fre‘llla'non units, ;.md they render different scores comparable. The P earson P {wo
L Xai :t;m:) cozfﬁcwnt, r, is a measure of the degree of relationship betweesaries
i ,‘1 e +,1 a:;ii (})ln the discrepancies of the subjects’ paired z scores, Zx ~ Y shif:
respectively. When ;‘ = (;: t;epre-sent perfect negative and perfect positive lineat felakd 2
r can be written ag ;fu, ere is no linear correlation between the variables (Se¢%” ce "
in terms of the original u fltCtlgn of gmate products, a function of variances and covaﬂv b’
is a dichotomy (point bi:;risél Reéla it formulas are available for r wher 0FF e 09
are two sets of complete ranksr()é e e AR dic.h olomics (.r‘b)’ e
pearman rank order correlation); (Section 2.3)-
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The regression coefficient, Byy, gives the optimal rule for a linear estimate of ¥ from X,
and is the change in Y units per unit change in X, that is, the slope of the regression line. The
intercept, By, gives the predicted value of Y for a zero value of X. Byy and B, are optimal
in the sense that they provide the smallest squared discrepancies between Y and estimated e
r is the regression coefficient for the standardized variables. When X is centered, By = My
(Section 2.4). Unless r = 1, it is a mathematical necessity that the average score for a variable
being estimated (e.g., Y) will be relatively closer to My than the value from which it is being
estimated (e.g., X) will be to its mean (My) when both are measured in sd units (Section 2.5).

When Y is estimated from X the sd of the difference between observed scores and the
estimated scores (the sample standard error of estimate) can be computed from r and sdy. The
coefficient of alienation represents the error as a proportion of the original sdy. r? equals the
proportion of the variance (sd?) of each of the variables that is shared with or can be estimated
from the other (Sections 2.6 and 2.7).

The two major methods of statistical inference are estimation and null hypothesis testing.
The formal model assumptions are presented (Section 2.8.1), confidence intervals are given
for Byy, By, rxy, for differences between independent sample values of these statistics, and
for the estimated f’i (Section 2.8.2). Given o, confidence intervals provide the range of values
within which the corresponding population values can be expected to fall. In Section 2.8.3, we
present the null hypothesis tests for simple regression and correlation statistics. Section 2.8.4
critiques null hypothesis testing and contrasts it with the use of confidence intervals.

The degree of accuracy (precision) in the estimation of parameters is reflected in the statis-
tic’s confidence interval. The probability of null hypothesis rejection (statistical power) can be
assessed before the research sample is collected (Section 2.9). Methods of finding the sample
size to produce a margin of error for a given degree of inclusion in the confidence interval
(95%, 80%) are presented (Section 2.9.1) and methods are given for determining the sam-
Ple size needed for the desired statistical power, that is, the probability of rejecting the null
hypothesis (Section 2.9.2).

A number of characteristics of the X and Y variables will affect the size of the correla-
tion between them. Among these are differences in the distribution of the X and Y variables
(Section 2.10.1), unreliability in one or both variables (Section 2.10.2), and restriction of the
range of one or both variables (Section 2.10.3). When one variable is included as a part of the
other variable, the correlation between them will reflect this overlap (Section 2.10.4). Scores
obtained by dividing one variable by another will produce spurious correlation with other
Variables under some conditions (Section 2.10.5). The r between two variables will be an
underestimate of the magnitude of their relationship when a curved rather than a straight line

st fits the bivariate distribution (Section 2.10.6). Under such circumstances, transformation
of one or both variables or multiple representation of one variable will provide a better picture
of the relationship between the variables.



