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A B S T R A C T

The practice of using covariates in experimental designs has become controversial. Traditionally touted by
statisticians as a useful method to soak up noise in a dependent variable and boost power, the practice recently
has been recast in a negative light because of Type I error inflation. But in order to make informed decisions
about research practices like this one, researchers need to know more about the actual size of the benefits and
costs of these practices. In a series of simulations, we compared the Type I error rates and power of two analytic
practices that researchers might use when confronted with an unanticipated, independent covariate. In the
baseline practice, a researcher only analyzes the effect of the manipulation on the dependent variable; in the
flexible-covariate practice, she analyzes both the effect of the manipulation on the dependent variable and the
effect adjusting for the unanticipated covariate. We show that the flexible-covariate (vs. baseline) practice
inflates Type I error by a small amount, and that it boosts power substantially under certain circumstances. The
flexible-covariate practice tends to be most beneficial when the covariate is strongly correlated with the
dependent variable in the population, and when the experimental design would have been only moderately
powered (40%–60%) without including the covariate in the analysis. We offer concrete recommendations for
when and how to use independent covariates in experimental designs, and contextualize our findings within the
movement toward quantifying trade-offs in choosing among research practices and optimizing the choice of
practice within a given research context.

Traditionally, statisticians have promoted the covariate as a useful tool
for soaking up extra noise in a dependent variable, thereby boosting the
statistical power of an experiment (e.g., Cohen, 1988; Maxwell &Delaney,
1990). More recently, however, this practice has been recast in a negative
light because the flexible inclusion of a covariate in an analysis can lead
to Type I error inflation (e.g., Simmons, Nelson, & Simonsohn, 2011;
Simonsohn, Nelson, & Simmons, 2014). Thus, covariates—once cast as
power-boosting heroes of experimental research—have been reimagined
as error-inflating villains. These contrasting perspectives have led to
considerable confusion as researchers attempt to distill these (often
nuanced) statistical discussions into concrete and straightforward guide-
lines for best practices. Indeed, a quick skim of various articles and

chapters on research practices can find covariates both touted for their
power-boosting capabilities and frowned upon for their error-inflating
potential within the same paper (e.g., Asendorpf et al., 2013; Ledgerwood,
Soderberg, & Sparks, 2017).1

One easy way to reconcile these contrasting narratives is simply to
advocate including a covariate in the analysis of experimental data if
and only if the covariate is specified a priori—for instance, in a pre-
analysis plan (see Ledgerwood et al., 2017; Simonsohn et al., 2014). By
choosing a covariate ahead of time and analyzing the data only with the
covariate included, researchers can avoid Type I error inflation while
still realizing any power-boosting benefits of including a covariate in
their analysis. This a priori approach to including a covariate therefore
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1 Of course, there are two different reasons why a researcher might use a covariate (see Supplemental materials for a detailed discussion). In the first—the focus of this article—a
researcher includes a covariate measured before an experimental manipulation in order to soak up some of the noise in her dependent variable. That is, the covariate is independent from
the manipulation, and it accounts for a portion of the variance in the dependent variable that is due to stable individual differences. In the second, a researcher includes a covariate
measured after an experimental manipulation, or measured in a nonexperimental study, in an attempt to control for a potential confound; in such cases, the purpose of the covariate is not
reducing unexplained variance in the dependent variable but rather accounting for some portion of the explained variance. We focus here on the first context; a host of other issues are
relevant for the second context and have been discussed in detail elsewhere (e.g., Westfall & Yarkoni, 2016; Yzerbyt, Muller, & Judd, 2004).
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represents an ideal strategy for researchers to use in order to maximize
what they can learn from their data.

But of course, even the most careful planning cannot foresee every
possible circumstance, and in the real and inevitably messy world of
everyday research, the possibility of including a covariate in a design is
sometimes unanticipated. A researcher may run an experiment, analyze
her data, and only then realize that she could have included a
particularly promising covariate that a colleague assessed at the
beginning of the semester. Consider a scenario that mirrors one we
have often seen in our own labs: A social psychologist conducts an
experiment to test the effect of a social comparison manipulation on
self-esteem, finds a non-significant effect, and then presents the “failed”
study at a lab meeting to ask for advice on next steps. A student might
then suggest: Why not include extraversion, which was measured in the
departmental prescreen, as a covariate in the analysis to boost power,
since extraversion correlates relatively strongly with self-esteem
(Robins, Tracy, Trzesniewski, Potter, & Gosling, 2001) and is therefore
likely to soak up a substantial amount of noise in the dependent
variable of interest? When researchers stumble upon a promising
covariate unexpectedly like this, should they ever consider using it in
the hope of boosting power and learning more from their already
collected data? Or should they shun unexpected covariates entirely, to
avoid rampant Type I error inflation?

To answer these questions, we need to know more about (a) how
beneficial the research practice of including a promising but unplanned
covariate is for boosting power, as well as (b) how costly this practice is
for Type I error. Like many other research practices, flexibly analyzing
one's experimental data both with and without a covariate poses a
trade-off (Brewer & Crano, 2014; Finkel, Eastwick, & Reis, in press;
Ledgerwood & Shrout, 2011): in this case, between boosting statistical
power on the one hand and increasing the likelihood of a false positive
on the other. If researchers are to make thoughtful and well-informed
choices about their research practices—and to engage in empirically
grounded discussions and debates about the merits and drawbacks of
various approaches—we need to start quantifying these kinds of trade-
offs and exploring the conditions under which they are bigger or
smaller (Miller & Ulrich, 2016).

In this article, we assume that most researchers share the goal of
maximizing what they can learn from their data—an aim that has long
been recognized as involving a balancing act between minimizing Type
I error on the one hand and maximizing statistical power on the other
(Keppel &Wickens, 2004; Lakens & Evers, 2014; Ledgerwood, 2014).
We set out to assess various approaches to using covariates that
researchers might consider, evaluating them in terms of their usefulness
in helping researchers to achieve that goal (see Table 1 for a preview of
our recommendations). In addition to considering the a priori research
practice noted above, we conducted a series of simulations to quantify
the power boost and Type I error inflation produced by flexibly
including a single, promising covariate when analyzing experimental
data. We also explore and discuss a range of other possible approaches a
researcher might take when confronting an unanticipated covariate,
including flexibly including multiple covariates and flexibly testing

interactions between a covariate and the key independent variable of
interest. We conclude with concrete recommendations for researchers
wishing to make informed decisions about trade-offs when selecting
among possible approaches to learning from their data.

1. The current research

A simple and straightforward way to quantify the effect of a given
research practice on both Type I error rate and power is by using Monte
Carlo simulations. Simulations allow us to create datasets that are
sampled from a known population model. We can then analyze these
datasets using different analytic practices to see how often a given
practice incorrectly detects an effect when none is present (which tells
us the practice's Type I error rate) and correctly detects an effect when
one is present (which tells us the practice's statistical power) in the
known population model. In our simulations, we focused on a simple
two-group experimental design in which a researcher wants to test the
effect of their manipulation, X, on their dependent variable, Y. We also
simulated a covariate, C, that was independent from X in the popula-
tion, reflecting the scenario of interest where a covariate is measured
before the manipulation in an experiment.

We then compared the Type I error rate and power produced by the
first two research practices listed in Table 1. In both cases, we imagine
that a researcher tests the effect of X on Y, and then only later discovers
that it would be possible to include a promising covariate in the
analysis.2 In the first, baseline research practice, the researcher forgoes
including the covariate because it was not specified a priori and only
infers the presence of an effect if the initial test of X on Y is significant at
p < 0.05. In the second, flexible-covariate practice, the researcher
conducts both the initial analysis without the covariate and then also a
second analysis with the covariate included, and infers the presence of
an effect if either the initial test of X on Y and/or the subsequent test of
X on Y adjusting for C is significant at p < 0.05.3 We assessed both the
degree of Type I error inflation and the power boost produced by the
second research practice (vs. the first) across varying levels of (1)
sample size, (2) the true effect size of X on Y, and (3) the true
correlation between C and Y in the population.

Table 1
Possible approaches to using independent covariates when analyzing experimental data (see Discussion for full recommendations).

Research practice Recommendation

Baseline: When confronted with a single, unanticipated, promising covariate after conducting the primary analysis,
ignore it. Stick to the original analysis plan.

Recommended if your priority is minimizing Type I error
regardless of power

Flexible-covariate: When confronted with a single, unanticipated, promising covariate after conducting the primary
analysis, flexibly include it in a second analysis.

Recommended if you want to balance Type I error and
power considerations.

Kitchen sink: When a primary analysis does not reach significance, try a series of data-dependent tests (e.g., using
multiple covariates, including the interaction between the covariate and the IV) until one test reaches
significance.

Not recommended

A priori: Before conducting a study, carefully choose a promising covariate and record a pre-analysis plan. Recommended and ideal: Boosts power without inflating
Type I error

2 Again, if a researcher can identify a promising covariate ahead of time, he can
maximize power while holding Type I error rate at 5% by setting and recording a pre-
analysis plan to conduct a single test of the effect of interest with the covariate included.
This is clearly the ideal strategy, as noted in Table 1, and we return to highlight this point
in the Discussion. But here, we are interested in quantifying the trade-offs that may
confront researchers in the messy real world, where sometimes the possibility of
including a promising covariate does not occur to a researcher until after he has already
conducted his study and analyzed his results.

3 This simulated strategy of conducting both tests and inferring an effect if either is
significant may sound slightly different from the sequential strategy described earlier, in
which a researcher tests the effect of X on Y and then pursues one of two courses of action
depending on the significance of this initial test: (1) if the initial test is significant, she
infers the presence of an effect, or (2) if the initial test is not significant, she continues on
to test the effect of X on Y adjusting for C and infers an effect if this second test is
significant. Note, however, that they are mathematically equivalent.
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2. Method

We describe our simulations in detail in the Supplemental materials;
here, we simply highlight the key elements of our approach. We
generated random samples of data consistent with a two-condition
experiment involving a manipulated variable X, a measured dependent
variable Y, and a measured covariate C. Across these simulations, we
systematically varied three factors: (1) The total sample size of the
simulated experiment (from N = 40 to 200 in increments of 40); (2) the
true effect size of X on Y (d = 0 to 0.80 in increments of 0.10); and (3)
the true correlation between C and Y (ρ= 0 to 0.6 in increments of
0.10). We then analyzed each dataset using the two research practices
described above: a baseline practice (a single analysis testing whether X
affects Y) and a flexible-covariate practice (one analysis testing whether

X affects Y and one analysis testing whether X affects Y when C is
included as a covariate; this practice produces a significant result if
either or both analyses are significant).

The Type I error rate is given by the percentage of simulated
samples in which a given research practice returns a significant result
(p < 0.05) when there is no effect of X on Y in the population (d = 0).
Power is provided by the percentage of simulated samples in which a
given research practice returns a significant result (p < 0.05) when
there is a true effect of X on Y in the population (d > 0). We calculated
two values of interest in order to compare them across the various
simulations: Type I error inflation, referring to the increase in the Type I
error rate produced by using the flexible-covariate (vs. baseline)
practice, and power boost, referring to the increase in power produced
by using the flexible-covariate (vs. baseline) practice.

Fig. 1. Type I error rate and power produced by the baseline and flexible-covariate practices as a function of the total sample size (N), the true effect size of X on Y (d), and the true
correlation between C and Y in the population (ρ). The Y-axis represents the probability of finding a significant result, which is marked by solid lines for the baseline practice and dotted
lines for the flexible-covariate practice across sample sizes and effect sizes. The dotted and solid lines reflect Type I error rate when d= 0 (left panel), and power when d > 0 (right
panel). The width of the shaded band between the solid line and the dotted line for each color represents the extent to which the flexible-covariate (vs. baseline) practice inflates Type I
error (left panel) and boosts power (right panel). Whereas Type I error inflates slightly as ρ increases, power receives a boost that becomes substantially larger as ρ increases. (For more
details, see Supplemental materials.) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3. Results

Fig. 1 illustrates the trade-off between Type I error inflation and
power boost across varying levels of sample size, true effect size of X on
Y, and true correlation between C and Y in the population (see
Supplemental materials for the complete set of simulated results).
Unsurprisingly, the flexible-covariate (vs. baseline) practice resulted
in Type I error inflation, which increased as the true correlation
between C and Y increased. However, this inflation was relatively
small: Even when C and Y correlated as high as ρ= 0.6 in the
population, the Type I error inflation produced by the flexible-covariate
practice remained below 3% (i.e., an error rate below 8%), regardless of
sample size. When C and Y correlated at 0.4 (akin to the correlation
between neuroticism and subjective well-being or extraversion and self-
esteem; DeNeve & Cooper, 1998; Robins et al., 2001), Type I error
inflation was only around 2%.

Power, on the other hand, increased—often substantially—under
the flexible-covariate practice. The extent of power boost depended on
the true correlation between C and Y, as well as the baseline power (a
function of sample size and the effect size of X on Y). As the true
correlation between C and Y increased, power boost increased. As
baseline power increased (because of an increase in sample size and/or
a larger effect of X on Y), power boost increased as well, reaching a
peak at moderate levels of baseline power, and then decreasing again as
statistical power approached its ceiling (see Fig. 2). Thus, using the
flexible-covariate practice should generally give researchers the great-
est power boost when their experiment would have been only moder-
ately powered (e.g., 40%–60%) without the covariate.

To demonstrate the trade-off more concretely, we zoom in on one
typical scenario as an example (Table 2). When the true effect size of X
on Y is d = 0.4 (approximately the average reported effect size in
social-personality psychology; Richard, Bond, & Stokes-Zoota, 2003;
Fraley & Vazire, 2014) and the true correlation between C and Y in
the population is ρ= 0.4, the flexible-covariate practice produces Type

I error inflations of around 2%, while yielding sizable power boosts. In
Table 2, we illustrate the practical impact of this research practice by
converting power boost to number of additional participants needed to
achieve comparable levels of power with the baseline practice. For
example, with a sample size of N = 160, flexibly including a covariate
results in a power boost of around 10%, which is equivalent to running
44 more participants.

3.1. Other potential approaches for unanticipated covariates

3.1.1. Flexibly including both C and the X*C interaction
Readers might reasonably wonder how our results compare to those

of Simmons et al. (2011), who suggested that including a covariate in
an analysis is a form of “researcher degrees of freedom” (p. 1359) that
can result in a potentially dramatic inflation of Type I error rate. In their
simulation studies, Simmons and colleagues examined the Type I error
rate for a research practice in which a researcher tests (1) the effect of X

Fig. 2. Power boost from using the flexible-covariate (vs. baseline) practice as a function of baseline power, shown across a range of true correlations between C and Y in the population.
Each dot indicates one population that we simulated (i.e., one combination of the three factors we varied in our study design: sample size, true effect size of X on Y, and true correlation
between C and Y in the population). Quadratic regressions between baseline power and power boost are fitted for each level of ρ, and regression lines and 95% confidence intervals are
plotted. Power boost peaks at moderate levels (around 40%–60%) of baseline power and drops off on either side of the mid-range.

Table 2
Type I error inflation and power boost produced by the flexible-covariate (vs. baseline)
practice at d= 0.4 and ρ= 0.4.

Total sample
size (N)

Type I error
inflation

Power
boost

Number of additional participants
needed for comparable power
boost (ΔN)

40 2% 6% 14
80 2% 10% 26
120 2% 10% 32
160 2% 10% 44
200 2% 8% 50

Note. The numbers of additional participants needed to achieve a comparable power boost
were calculated as the difference between the total sample size in the first column and the
minimum sample size required by the baseline practice to reach or exceed the (boosted)
power of the flexible-covariate practice, as computed in G*Power (Faul, Erdfelder,
Buchner, & Lang, 2009).
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on Y, (2) the effect of X on Y controlling for C, (3) the interactive effect
of X and C on Y, and (4) the effect of X on Y controlling for both C and
the interaction between X and C; the researcher then reports a finding if
any of these four tests reaches significance. We conducted additional
simulations examining this four-part approach across the various
sample sizes, true effect sizes of X on Y, and true correlations between
C and Y included in our design. Consistent with the illustrative findings
reported by Simmons et al. (2011), we found that this practice
substantially inflated Type I error rates across the conditions in our
design, such that Type I error rates regularly exceeded 10% (see
Supplemental materials for further details). In contrast, the power
boost provided by the Simmons et al. approach was similar to that of
the flexible-covariate practice we tested in our original simulations. For
example, in the research scenario described in the preceding paragraph
(where N = 160, d = 0.4, ρ= 0.4), using the Simmons et al. practice
(vs. the baseline practice) would provide a power boost of around 11%,
while more than doubling the Type I error rate (from 5% to 12%). In
contrast, using our flexible-covariate (vs. baseline) practice would
provide a power boost of around 10%, while inflating Type I error rate
by only 2% (from 5% to 7%). In other words, allowing C to interact
with X and reporting any significant effect substantially inflates Type I
error beyond the flexible-covariate practice we tested in our main
simulations, without providing much of an additional boost to power.
We therefore recommend against using the four-part practice.4

3.1.2. Flexibly including multiple covariates
What happens to Type I error rate and power when researchers

consider flexibly including more than one covariate in their analysis?
For example, in the scenario we described at the beginning of this
paper, a researcher wonders whether to flexibly include a single,
especially promising covariate—extraversion—in an analysis testing
the effect of social comparison information on self-esteem because large
datasets suggest a fairly strong correlation between extraversion (the
potential covariate) and self-esteem (the dependent variable). But what
would happen if instead of carefully choosing this one particularly
promising covariate, a researcher instead adopted a “kitchen sink”
approach and decided to flexibly include each of the other Big Five
factors as a covariate as well? Although it might be tempting for
researchers to flexibly include an entire battery of potential covariates
in their analysis, hoping to find one or another that will produce a
favorable p-value, we discourage this kitchen-sink approach because it
can inflate Type I error rates well beyond the carefully chosen flexible-
covariate practice described in our main simulations. This happens
because a kitchen-sink practice substantially increases the number of
significance tests that are conducted on the data.

We conducted a series of additional simulations to illustrate this
problem. In these simulations, the baseline practice again involved a
single analysis testing whether X affects Y; the kitchen-sink practice, on
the other hand, included six tests: one analysis testing the effect of X on
Y, and five additional analyses testing the effect of X on Y when
controlling for each of five potential covariates (analogous to a scenario
in which a researcher systematically tests whether any of the Big 5
factors “works” to produce a significant effect of X on Y). The extent of
Type I error inflation in such a scenario depends on how strongly each
of the covariates correlates with Y, and it can get quite a bit higher than
the original flexible-covariate practice we simulated above. For exam-

ple, when two of the five covariates strongly correlated with Y (ρ= 0.4)
while the other three covariates correlated more weakly with Y
(ρ= 0.2), using the kitchen-sink practice inflated the Type I error rate
to 10%. The inflation became even worse as the correlations between
the five covariates and Y grew stronger: For example, the Type I error
rate could reach as high as 16% when C1–C5 each correlated with Y at
ρ= 0.5.5

The Type I error rate produced by a kitchen-sink approach also
depends on how many flexible tests are considered (e.g., is each
covariate tested one at a time or does the researcher also include them
in pairs, trios, fours, and/or all together? Are any or all of the possible
covariates allowed to interact with X?). In general, as the number of
possible tests increases, so too does the Type I error rate. Thus, the Type
I error rate associated with using a kitchen-sink approach in the real
world becomes nearly impossible to estimate because of the many
potential researcher decisions and population parameters that can
affect it.6 This means that when considering whether to adopt a
kitchen-sink practice, researchers cannot make informed decisions
about the likely trade-off between Type I error inflation and power
boost, because so many unknown parameters can influence the trade-
off in this context. We therefore recommend against flexibly including
multiple covariates in an analysis, both because doing so can substan-
tially inflate Type I error rates (as illustrated by the scenarios examined
above), and because researchers will not have a good sense of the trade-
offs they are making between Type I error inflation and power boost.

3.1.3. Using the observed correlation in the sample to decide whether to
flexibly include a single, promising covariate

Flexibly including a single, unanticipated covariate in an analysis
seems to produce a relatively reasonable trade-off between Type I error
inflation and power boost, compared to the even more flexible practices
described above. But could we improve upon the single flexible-
covariate practice by somehow retaining the power boost it provides
while minimizing Type I error inflation? Given that greater power boost
tends to occur at higher correlations between C and Y in the population,
researchers might intuitively expect that they can simultaneously
maximize their power boost and reduce Type I error inflation if they
decide, upon first encountering an unanticipated but promising covari-
ate, to only include it in their analysis if the covariate correlates with Y
at or above a certain level in their sample. For instance, the researcher
in our example scenario may decide to only include extraversion as a
covariate if it correlates with self-esteem at or above r= 0.3. In other
words, could researchers use the sample correlation between C and Y to
figure out which color curve in Fig. 2 they are likely to be on, and then
only use the flexible-covariate practice if they are on one of the higher
curves?

However, additional simulations suggested that this approach does
not improve the trade-off between error inflation and power boost.
Because correlations tend to fluctuate wildly when using the sample
sizes typically employed in social psychology studies (N < 250;
Schönbrodt & Perugini, 2013), testing the correlation between C and

4 If researchers wish to test the homogeneity of regression assumption (see e.g., Cohen,
Cohen, West, & Aiken, 2003, pp. 350–351) before relying on the results of an ANCOVA
model, we recommend that upon encountering a promising but unanticipated covariate,
they set and record the following exploratory analysis plan: (1) Run an ANCOVA testing
the effect of X on Y adjusting for C and the X*C interaction. If the X*C interaction is
significant, stop. Do not use the flexible-covariate strategy, and do not interpret the X*C
interaction as meaningful (there is a relatively high chance that it is a false positive). If the
X*C interaction is not significant, proceed to: (2) Run an ANCOVA testing the effect of X
on Y adjusting for C (i.e., the flexible-covariate strategy) and follow the recommendations
outlined in the Discussion below.

5 In these examples, the sample size was set at N = 200, and the intercorrelations
among the five covariates were set as 0.1 or below. Varying the sample size or the
covariate intercorrelations (e.g., setting them to be the same as those observed in a recent
meta-analysis of the Big Five intercorrelations; van der Linden, Nijenhuis, & Bakker,
2010) did not substantially change the pattern of Type I error rates (difference within
1%).

6 The kitchen-sink strategy we considered, for instance, can produce at least 9 (effect
size of X on Y: Cohen's d= 0–0.80 in increments of 0.10) × 5 (total sample size:
N = 40–200 in increments of 40) × 75 (magnitude of correlation between each C and Y:
ρ= 0–0.6 in increments of 0.10) × 710 (magnitude of correlation between any two Cs:
ρ= 0–0.6 in increments of 0.10)≈ 2.56 × 1014 potential conditions, even when we do
not consider additional variations on the strategy (e.g., including two or three covariates
at a time). Given the astronomical number of potential conditions, it would be
exceedingly difficult for a researcher to gauge the likely trade-offs involved in adopting
a kitchen-sink strategy for a particular study by estimating all the relevant population
parameters.
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Y in a small sample will give researchers unreliable estimates of the true
correlation in the population. Since the extent of both Type I error
inflation and power boost depends on the correlation between C and Y
in the population, not the correlation observed in the sample, referring
to the sample correlation gives researchers a poor estimate of the trade-
off they face in reality. As a result, using the observed correlation
between C and Y to decide whether to flexibly include a covariate does
not improve the trade-off between Type I error inflation and power
boost (see Supplemental materials for details). Thus, we recommend
against trying to use the observed correlation between C and Y within a
small (N < 250) sample as a decision rule for whether to include an
unanticipated covariate in an analysis—it does not improve the Type I
error inflation/power-boost trade-off, and may mislead researchers into
thinking they have a more precise estimate of that trade-off than they
really do.

3.1.4. Adjusting alpha to offset Type I error inflation
Finally, one might wonder whether reducing the alpha level for the

flexible test of X on Y adjusting for C could allow researchers to hold their
ultimate Type I error rate at 5% while still capitalizing on at least part of
the power boost observed in our simulations. However, this approach
confronts the same challenge we encountered above: In the real world,
researchers do not know the actual population parameters that char-
acterize their study (we can specify the true population correlations and
effect sizes in a simulation, but in reality, of course, these numbers are
unknown). Because the extent of Type I error inflation depends on these
population parameters, it is impossible to know precisely what level of
adjusted alpha would keep Type I error rate at exactly 5% when the
population parameters are unknown. If researchers adopt an adjusted
alpha value that holds the Type I error rate at or below 5% across a range
of possible population parameters, this adjusted value will be too
conservative under some conditions. Therefore, this approach results in
a considerable loss of power—for instance, additional simulations
showed that if researchers were to adopt an adjusted alpha value of
0.033, they would lose a substantial amount of the power boost provided
by the flexible-covariate practice; in some conditions, researchers would
even lose power relative to the baseline practice because the adjusted
alpha value is too conservative (see Supplemental materials for details).
Therefore, for researchers who wish to prioritize holding their Type I
error rate at 5% for a particular experiment, we advise against using the
flexible-covariate practice with an adjusted alpha level. Instead, our
recommendation for these contexts is for researchers to use the baseline
practice (i.e., ignore the unanticipated covariate)—or to consider using
the flexible-covariate practice as an exploratory analysis, acknowledging
that it will slightly inflate Type I error for the current experiment, and to
follow it up with a confirmatory replication study.

4. Discussion

Our results suggest that flexibly including a single, unanticipated
covariate in an analysis can both slightly inflate Type I error and
substantially boost power. Across a range of plausible sample sizes, true
effect sizes of X on Y, and population correlations between C and Y, the
Type I error rate produced by a flexible-covariate practice remained
below 8%. Meanwhile, the power boost from the flexible-covariate
practice was highest when the population correlation between C and Y
was moderate to high, and when an experiment was moderately
powered.

We hope that illuminating these trade-offs enables researchers to
make informed decisions about whether and when to consider using a
flexible-covariate approach based on the relative importance of mini-
mizing Type I error and maximizing power in a given research context.
For instance, in contexts where data collection is easy and false
positives are costly, researchers may wish to prioritize minimizing
their Type I error rate. In such contexts, the Type I error inflation
produced by the flexible-covariate practice may not be worth the boost

to power, and researchers may choose instead to rerun their study with
the promising covariate recorded ahead of time in a pre-analysis plan.
On the other hand, in contexts where data collection is difficult and
false negatives are costly, researchers may wish to prioritize increasing
their power. In these contexts, the flexible-covariate practice may be
worth considering as a tool for maximizing what researchers can learn
from the data they have already collected.

We encourage researchers to weigh these trade-offs for themselves,
based on their own priorities and their own particular research context.
With that caveat, we can offer some concrete recommendations for
when and how to use independent covariates (i.e., covariates measured
before the manipulation in experimental designs) that we think will be
generally applicable to many researchers in many contexts:

1. Whenever possible, carefully choose a promising covariate ahead of time.
If researchers (a) identify a covariate that is likely to correlate
strongly with the dependent variable in the population, and (b)
record their planned analysis ahead of time in a pre-analysis plan,
they can gain a substantial power boost while preserving a 5% Type
I error rate. This approach allows researchers to take advantage of
the covariate's ability to soak up noise in the DV while entirely
avoiding the Type I error inflation that results from data-dependent
analytic decisions.

2. When confronted with a serendipitous, unplanned covariate:

a) Consider adjusting for the covariate in the test of X on Y if it is likely to
correlate strongly with the DV in the population. Rely on large datasets
or meta-analyses that do a good job of accounting for publication
bias7 whenever possible for evidence of strong correlations. Avoid
relying on the observed correlation within the experimental dataset
itself, since estimates can fluctuate widely from the true population
parameter in smaller samples (Schönbrodt & Perugini, 2013; see
Supplemental materials).

b) Decide whether the cost of inflating Type I error is worth the benefit of the
potential power boost. A flexible-covariate practice will be especially
helpful when a study is only moderately powered and when it is
difficult or impossible to collect more data.

c) Consider registering your carefully chosen covariate before conducting
the flexible-covariate analysis by downloading the simple form provided
at this link:https://osf.io/pqk35. Registering your covariate before
including it in the analysis may be helpful for reassuring editors,
reviewers, and readers that you conducted one and only one flexible
analysis.

d) Always transparently report all tests conducted and clearly label a
flexible-covariate analysis as exploratory. Researchers should always
be transparent about the number and nature of the tests they
conducted. Since a flexible-covariate practice is by definition data-
dependent, it should be clearly labeled as such and followed up with
a replication before researchers assign high confidence to the results
(van't Veer & Giner-Sorolla, 2016; Ledgerwood et al., 2017). We
offer a suggested template for reporting the flexible-covariate
practice in Fig. 3.

3. When confronted with a scenario not modeled here: Consider conduct-
ing your own simulations to model the trade-offs involved in the
specific scenario that you confront (e.g., encountering two promis-
ing but unanticipated covariates and conducting one flexible
analysis that includes both), using the simulations reported here
as a template (syntax available at osf.io/5d6hn).

7 For example, look for meta-analyses that use selection methods to assess how robust
the results are to different forms of publication bias (McShane, Böckenholt, & Hansen,
2016), or meta-analyses that incorporate large amounts of unpublished data (e.g.,
Eastwick, Luchies, Finkel, & Hunt, 2014), or meta-analyses that include data from many
studies in which the result of interest to the meta-analysis was not the focal hypothesis
test of the original paper (e.g., Emery & Levine, in press).
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Correspondingly, we also offer some notes of caution:

1. The recommendations above apply only to experimental designs when the
covariate is measured before the manipulation. Our simulations and
recommendations assume X and C are independent in the popula-
tion and do not generalize to other contexts.

2. Avoid testing the interaction between X and C or flexibly including more
than one covariate. As the number of tests increases, Type I error rate
can increase substantially. For example, in their exploration of
flexible covariate use, Simmons et al. (2011) found (and we
replicated in additional simulations) that flexibly testing the effect
of (1) X on Y, (2) X on Y adjusting for C, (3) the effect of X on Y
adjusting for C and the X*C interaction, and (4) the interactive effect
of X and C on Y can inflate Type I error rates to 11.7%. In contrast,
in our simulations, flexibly including a single, carefully chosen
covariate when testing the effect of X on Y inflated Type I error rates
to only 6–8%, while offering a power boost comparable to that of
Simmons et al.’s four-part approach.

3. Resist the temptation to toss a covariate into an analysis “just to see if it
helps,” without a compelling reason to expect a strong correlation
between C and Y. A weakly correlated covariate will barely boost
power, but can inflate Type I error—a poor trade-off to make.

5. Conclusion

By quantifying the trade-off between Type I error inflation and
power boost associated with including an unanticipated covariate in an
analysis, we respond to recent calls for understandsing how researchers
can optimize their choice of research practices (Finkel et al., in press;
Ledgerwood, 2016; Miller & Ulrich, 2016), and provide recommenda-
tions for when and how to use independent covariates in experimental
designs. Covariates are not simply error-inflating villains or power-
boosting heroes—rather, our simulations show they have both benefits
and costs. Researchers can weigh these trade-offs to make informed
choices about optimal practices to use in their own research. We hope
this paper can help researchers make thoughtful decisions about how to
plan their experiments ahead of time as well as how to cope with
unanticipated situations (i.e., stumbling upon a promising but unex-
pected covariate), thereby maximizing the informational value of their
research.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.jesp.2017.04.011.
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