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Moderation hypotheses are common in psychological 
research. For instance, researchers often test whether 
a given effect differs across groups, such as gender or 
racial groups, or examine how environmental or indi-
vidual difference factors such as adversity or biological 
traits modify risk indicators of psychopathology (e.g., 
Luthar, Cicchetti, & Becker, 2000). In ordinary least 
squares (OLS) regression, moderation is tested by 
including a linear interaction term (e.g., XZ) with its 
constituent first-order terms (X and Z). The magnitude 
of the interaction coefficient provides the estimated 
change in the effect of the focal predictor X on the 
outcome Y for a 1-unit change in the moderator Z (or, 
equivalently, the estimated change in Z for a 1-unit 
change in X). The significance value and confidence 
interval for the interaction coefficient are then typically 
used to determine the degree of support for the mod-
eration hypothesis.

To date, considerable work has offered guidelines 
on statistical improvements for testing and interpreting 
interactions (e.g., Brambor, Clark, & Golder, 2006). For 
instance, it is now common practice for researchers to 
mean-center continuous X and Z variables when testing 

interactions, in order to facilitate the interpretation of 
intercepts and conditional effects (Dalal & Zickar, 
2012). Researchers also regularly conduct simple-slopes 
analyses to test the conditional effect of X at multiple 
levels of Z (Aiken & West, 1991), or use the Johnson-
Neyman ( J-N) technique ( Johnson & Neyman, 1936) to 
assess the conditional effect of X on Y across a range 
of values of Z. These approaches have been extended 
to multiple analytic frameworks, such as hierarchical 
linear modeling and structural equation modeling 
(Preacher, Curran, & Bauer, 2006). Researchers have 
also identified a number of factors that substantially 
reduce power to detect interaction effects (for reviews, 
see Aguinis, 1995, and Frazier, Tix, & Barron, 2004). 
These include poor reliability of and range restriction 
in the predictor variables (Aguinis, 1995), substantial 
between-groups disparities in sample size and variance 
when the potential moderation is a categorical variable 
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(Aguinis, 1995; Stone-Romero, Alliger, & Aguinis, 1994), 
reduced variability in a continuous moderator as a 
result of artificially dichotomizing the moderator (e.g., 
by a median split) prior to analysis (which can also 
increase risk for detecting spurious effects; Bissonnette, 
Ickes, Bernstein, & Knowles, 1990; MacCallum, Browne, 
& Sugawara, 1996), and testing the statistical signifi-
cance of a categorical-variable interaction by analyzing 
the focal predictor’s effect on the dependent variable 
separately for each category (i.e., subgroup analysis; 
Stone-Romero & Anderson, 1994).

However, considerably less attention has been 
devoted to providing recommendations for the substan-
tive evaluation of interactions, which may have implica-
tions for conclusions regarding competing theoretical 
claims (see, e.g., Berry, Golder, & Milton, 2012; Roisman 
et al., 2012). For instance, in developmental psychopa-
thology, some researchers have proposed a diathesis-
stress model (Monroe & Simons, 1991). This model 
posits that individuals with a vulnerability (e.g., difficult 
temperament) fare worse than those without the vulner-
ability when exposed to environmental stressors (such 
as poor parenting), but may look no different from their 
nonvulnerable peers in low-stress conditions. An alter-
native theory proposes that these same vulnerabilities 
can also help children thrive in protective environments 
(Ellis & Boyce, 2008). These theories imply two differ-
ent forms of an interaction, and determining whether 
the data support one theory or the other depends on 
how researchers evaluate the nature of the interaction. 
Roisman et  al. (2012) highlighted analytic and visual 
approaches that can help determine which hypothesis 
is better supported by the data, such as visual inspection 
of interaction plots, regions-of-significance analyses, 
and tests of nonlinear (e.g., quadratic) effects, among 
others. In this article, we aim to provide similar recom-
mendations for social science more generally, to improve 
scientific inference for evaluating moderated effects.

The goal of this article is to demonstrate how theo-
retical inference in tests of moderation can be improved 
by improving visual displays. A major aim in the social 
sciences is to increase transparency of the scientific 
process to ensure rigor and replicability (Cumming, 
2014). Visual displays can substantially aid in attaining 
this goal. Displays provide efficient and nuanced infor-
mation about univariate and multivariate relations in 
data that may not be readily apparent from tables or 
text descriptions of results. They also help identify 
misspecified models and influential data points (e.g., 
outliers) and facilitate how key analytic findings are 
communicated between researchers and their audiences 
(Tay, Parrigon, Huang, & LeBreton, 2016). Optimizing 
the visual display of interactions can thus improve the 
scientific rigor of moderation tests.

The Utility of Interaction Displays

Why are visual displays important for evaluating moder-
ated effects? First, interpreting interaction coefficients 
is not necessarily easy or straightforward (see also 
Dawson, 2014; Preacher et al., 2006). Consider the fol-
lowing multiple regression equation with a single two-
way interaction term:1

y b b x b z b x zi i i i i i= + + + +0 1 2 3 ε .

Output from a regression analysis (assuming con-
tinuous and standardized predictors) might provide us 
with the following (Example 1), which shows coeffi-
cient estimates in place of the b values:

ˆ .y = + + +4 15 11 10 0x z xz

For applied researchers, the interpretation of 15 or 11 
may not be intuitive, largely because each of these 
effects depends (or is conditional) on the value of the 
other interacting variable given the inclusion of the 
interaction term, XZ. For instance, one can interpret the 
coefficient b1 (in this case, 15) as the effect of a 1-unit 
change in X on the value of Y when all other predictors 
are equal to zero. In other words, because an interac-
tion term is specified in this model, b1 is also the effect 
of X only when Z = 0. Rearranging the formula can 
show this more explicitly:

ˆ .y z z x= + + +( )4 11 15 10 0

When Z is 0, 10Z is also 0, and the slope of Y on X 
reduces to 15. Because 11Z in the remaining term also 
reduces to 0 in this case, we are left with the regression 
equation ŷ  = 40 + 15x, which gives the intercept and 
simple slope of X for Y when Z is zero. Because Z is 
standardized (i.e., the mean of Z is 0), the slope for X 
is synonymous with the slope of Y on X at the mean 
of Z. Similarly, b3 (in this case, 10) might be interpreted 
as the effect of a 1-unit change in Z on the coefficient 
of X (or, conversely, the effect of a 1-unit change in X 
on the coefficient of Z). With a bit of algebra, one can 
use the estimates of the conditional effects, b2 and b1, 
and the interaction term, b3, to extract the meaning of 
the interaction in relatively plain language that can help 
us to confirm or disconfirm the hypothesized effect. 
Following Aiken and West (1991), readers could use 
the information in a regression table to construct 
simple-slopes equations for a range of values of Z. For 
instance, when Z = −1 in the present example, the 
equation becomes ŷ  = 29 + 5x; when Z = 1, the equa-
tion becomes ŷ  = 51 + 25x; and so on. However, we 
argue that relying on algebra to understand a substan-
tive finding unduly burdens readers.
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Instead, we suggest that researchers use visual dis-
plays to aid themselves and readers in making infer-
ences about moderation hypotheses. Figure 1 illustrates 
three different forms of interaction, each of which may 
support different theories about how the interplay 
between two factors influences an outcome (see also 
Luthar et  al., 2000; Roisman et  al., 2012). Figure 1a 
illustrates a synergistic interaction, in which higher lev-
els of Z enhance the effect of X on Y (as in Example 
1). In contrast, Figure 1b illustrates a buffering effect, 
in which higher levels of Z instead reduce the effect of 
X on Y. Figure 1c illustrates an antagonistic interaction: 
The two predictors affect Y in the same direction, 
though X is associated with Y only at lower levels of Z 
or in the absence of Z. Such displays are common in 
psychological research and are typically the basis for 
making inferences about whether the data support a 
specific moderation hypothesis.

However, these displays lack a number of core fea-
tures that are key to both effective communication and 
statistical integrity (G. King, Tomz, & Wittenberg, 2000; 
Tufte, 2001). First, these plots limit the number of dis-
played quantities of substantive interest, in that they 
communicate only the values of Ŷ  at selected values of 
X and Z, and any effects outside this range remain 
undetected (Preacher et al., 2006; Roisman et al., 2012). 
Second, they do not communicate a reasonable mea-
sure of uncertainty in the displayed estimates. Including 

a measure of uncertainty is either recommended or 
required by journal editors for text descriptions of 
results (Cumming, 2014), but uncertainty is seldom 
addressed in the analysis of interactions (Brambor 
et al., 2006). For example, although the American Psy-
chological Association publication manual (American 
Psychological Association, 2010) recommends reporting 
95% confidence intervals (CIs) for regression coeffi-
cients whenever possible, most current interaction dis-
plays do not include confidence regions for simple 
slopes. Third, these graphics do not show the observed 
data on which the model estimates are based. Including 
these data is essential for diagnosing model misspecifi-
cation—that is, determining whether a model appro-
priately captures patterns that are suggested by the 
observed data (Cohen, Cohen, West, & Aiken, 2003). A 
common means of including the data in the bivariate 
case is the scatterplot, which helps one determine visu-
ally how well a regression line quantifies a theoretically 
linear bivariate relation (e.g., Tufte, 2001), yet observed 
data are rarely included in displays of interaction 
effects.

Here, we first review present practices for the visual 
display of interactions in psychology and describe the 
strengths and limitations of these approaches. We then 
describe an open-source software utility that allows 
users to apply several graphic solutions that address 
these limitations.
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Fig. 1. Standard visual displays illustrating (a) synergistic, (b) buffering, and (c) antagonistic interactions.
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Disclosures

All simulation code, simulated data, and code for creat-
ing the key figures in this article, as well as source code 
and instructions for using the Web utility described, are 
available online in a GitHub repository (https://github 
.com/connorjmccabe/InterActive). Code for generating 
the simulated examples used in this article and the 
simulated data can be found at https://github.com/
connorjmccabe/InterActive/tree/master/Simulated%20
Data. Code for reproducing the key figures can be 
found at https://github.com/connorjmccabe/InterAc 
tive/tree/master/Manuscript%20Figures%20Code. 
Source code for the Web utility, called interActive, intro-
duced in this manuscript can be found at https://github 
.com/connor jmccabe/InterAct ive/blob/master/
interActive_OLS.R.

Present Practices

The simple-slopes approach

The most common method for probing interaction 
effects is simple-slopes analysis, typically conducted 
using the pick-a-point approach (Aiken & West, 1991). 
In the pick-a-point approach, researchers select values 
of interest of the moderator variable (Z) and examine 
the effect of the focal predictor (X) on the outcome (Y) 
at each of these values (Cohen et al., 2003). When Z is 
continuous, the interaction is probed by recentering 
Z around values of interest. That is, Z is shifted by 

subtracting a value—typically +1 SD or −1 SD—from 
each observation, such that the distribution of Z is 
centered about this value. The model is reestimated 
with these recentered variables to obtain coefficient 
estimates, CIs, and p values for the effect of X on Y at 
these selected values of Z. Table 1 illustrates this pro-
cess in a simulated example of a synergistic interaction 
involving continuous variables (the parameterization is 
based on the model in Example 1). The table suggests 
that when Z is low (i.e., centered at 1 SD below its 
mean), a 1-unit increase in X is not significantly associ-
ated with change in Y (b = 4.01, 95% CI = [−7.60, 
15.61]), β = 0.06). However, when Z is at the mean, a 
1-unit increase in X is associated with a 22.17-unit (95% 
CI = [12.79, 31.54]) increase in Y (β = 0.34), and when 
Z is high (i.e., centered at 1 SD above its mean), a 1-unit 
increase in X is associated with a 40.32-unit (95% CI = 
[27.70, 52.95]) increase in Y (β = 0.62). In the case of 
binary categorical moderators, analyses can be carried 
out using identical steps, but instead the moderator is 
recentered around each dummy-coded category. Test-
ing interactions is more analytically cumbersome with 
multiple categories because it involves testing a set of 
interaction terms using multiple dummy-coded vari-
ables (e.g., Dawson, 2014). However, a simple-slopes 
estimate for each dummy-coded category can be 
derived by reestimating the effect of X on Y separately 
for each category (Cohen et al., 2003).

Figure 2 provides a simple-slopes plot for Example 
1, based on the simulated results in Table 1. Plots like 
this one can be created with software programs such 

Table 1. Simulated Results of a Synergistic Interaction Probed Using the Pick-a-
Point Approach (N = 150)

Parameter Estimate SE 95% CI β t p

Z centered at 1 SD below its mean
Intercept 19.80 5.99 [7.96, 31.65] 3.30 .001
X coefficient 4.01 5.87 [–7.60, 15.61] 0.06 0.68 .496
Z coefficient 17.29 4.00 [9.38, 25.20] 0.32 4.32 < .001
XZ coefficient 17.11 3.67 [9.86, 24.36] 0.26 4.67 < .001

Z centered at its mean
Intercept 38.15 4.11 [30.03, 46.27] 9.28 < .001
X coefficient 22.17 4.74 [12.79, 31.54] 0.34 4.67 < .001
Z coefficient 17.29 4.00 [9.38, 25.20] 0.32 4.32 < .001
XZ coefficient 17.11 3.67 [9.86, 24.36] 0.26 4.67 < .001

Z centered at 1 SD above its mean
Intercept 56.50 5.82 [44.99, 68.00] 9.70 < .001
X coefficient 40.32 6.39 [27.70, 52.95] 0.62 6.31 < .001
Z coefficient 17.29 4.00 [9.38, 25.20] 0.32 4.32 < .001
XZ coefficient 17.11 3.67 [9.86, 24.36] 0.26 4.67 < .001

Note: X is mean-centered in all the models. Note that the intercepts and estimates of the 
coefficient of X differ across transformations of Z. CI = confidence interval.

https://github.com/connorjmccabe/InterActive
https://github.com/connorjmccabe/InterActive
https://github.com/connorjmccabe/InterActive/tree/master/Simulated%20Data
https://github.com/connorjmccabe/InterActive/tree/master/Simulated%20Data
https://github.com/connorjmccabe/InterActive/tree/master/Simulated%20Data
https://github.com/connorjmccabe/InterActive/tree/master/Manuscript%20Figures%20Code
https://github.com/connorjmccabe/InterActive/tree/master/Manuscript%20Figures%20Code
https://github.com/connorjmccabe/InterActive/blob/master/interActive_OLS.R
https://github.com/connorjmccabe/InterActive/blob/master/interActive_OLS.R
https://github.com/connorjmccabe/InterActive/blob/master/interActive_OLS.R
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as Excel (e.g., Dawson, 2014), either by using coeffi-
cients derived using the pick-a-point approach or by 
computing simple slopes based on coefficient estimates 
from the original model. By default, plots are typically 
constructed displaying the effect at 1 SD above and 
below the mean of both X and Z.

Simple-slopes plots are limited in several ways. First, 
they often do not represent the full nature of an inter-
action effect because they typically display the data 
only at 1 SD above and below the means of the predic-
tors. For instance, each of the interactions in Figure 1 
may also take the form of a disordinal (or crossover) 
interaction if the depicted lines are within an appropri-
ate range of X. Disordinal interactions suggest that the 
rank order of Y given Z changes with X (or the rank 
order of Y given X changes with Z). The value of X at 
which this change happens (i.e., the crossover point) 
can be computed as follows (Cohen et al., 2003):

 
x

b

b
= − 2

3

.  (1)

A crossover point may provide evidence that an interac-
tion is disordinal. However, all interactions are disor-
dinal interactions across an infinite range of X, and 
interactions should not be interpreted as disordinal if 
the crossover point is outside the observed range of X 
(Cohen et al., 2003). Thus, on one hand, extending the 
horizontal axis beyond the observed range of the focal 
variable may suggest a disordinal interaction that is 
unsupported by the data (a Type I error), but on the 

other hand, restricting the range of X (to within 1 SD 
above and below its mean, e.g.) may obscure evidence 
of this effect if it truly exists (a Type II error; e.g., Rois-
man et al., 2012). Providing a depiction of an interac-
tion within a meaningful range of X can substantially 
aid in evaluating this effect.

Range restriction in moderator variables is also a 
concern. Displaying an interaction at several levels of 
a continuous moderator does not necessarily describe 
the full nature of an interaction across all relevant levels 
of that moderator. This limitation may be especially 
important when the significance or direction of the 
simple-slopes effect changes at more extreme levels of 
the moderator. For example, if a moderator is skewed 
or if a sample is particularly large, there may be a sub-
stantial number of participants represented at values 
higher than 1 SD above the mean or lower than 1 SD 
below the mean, and simple-slopes plots may not accu-
rately represent the nature of the predictors’ effects at 
those values. Using the J-N technique addresses this 
concern analytically ( Johnson & Fay, 1950; Potthoff, 
1964). This approach provides an estimate of the range 
of the moderator variable at which the focal predictor 
is significantly associated with the outcome. In effect, 
this technique is an extension of the pick-a-point 
approach: Interactions are probed not only at a limited 
number of levels of a moderator, but rather across the 
full range of values of the moderator observed in the 
data. The statistical significance and direction of these 
simple slopes are then used to better characterize the 
interaction. Tools for conducting and plotting the results 
of J-N analyses have been developed for standard sta-
tistical software programs (Hayes & Matthes, 2009; 
Preacher et al., 2006). Simple-slopes plots do not accom-
modate the analytic strengths of the J-N technique.

Plots of simple slopes typically show only the simple-
slopes estimates, with little direct indication of the 
uncertainty in the estimates or whether the slopes dif-
fered significantly from zero. Showing the uncertainty 
in simple slopes would provide a depiction of how 
precisely each effect was estimated, which is influenced 
by factors such as sample size. For instance, Figure 3a 
displays simple slopes and confidence regions associ-
ated with the predicted values of Y for the simulated 
example in Figure 2 and Table 1 (N = 150), whereas 
Figure 3b displays simple slopes and confidence regions 
from an identical parameterization in a larger sample 
size (N = 500). Although the estimates for the two sam-
ple sizes are nearly identical, the confidence regions 
are notably wider in the smaller sample, which suggests 
less certainty in the predicted outcome values com-
pared with the larger sample. Moreover, whereas the 
simple slope at low levels of the moderator (1 SD below 
the mean) was not significant in the smaller sample  
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Fig. 2. A simple-slopes plot of the simulated XZ interaction corre-
sponding with the results provided in Table 1. Note that low refers 
to 1 SD below the mean and high refers to 1 SD above the mean 
for both X and Z.
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(b = 4.01, 95% CI = [−7.60, 15.61], β = 0.06), this effect 
was statistically different from zero in the larger sample 
(b = 6.64, 95% CI = [0.64, 12.64], β = 0.12). This is 
because, holding all else constant, the standard error 
of the simple slope will be smaller at larger sample 
sizes, which results in more precise estimation of the 
regression line and increased power to detect the slope 
effect.

Finally, most simple-slopes plots do not display the 
observed data. This omission prevents the use of these 
plots to diagnose whether the interaction effect is 
appropriately specified (e.g., Tay et  al., 2016) or 
whether the simple slopes selected represent actual 
data. For instance, Figure 4 displays three scenarios for 
Example 1 in which the observed data for the predictor 
variables were simulated from different population dis-
tributions (N = 500). Although the simple slopes are 
nearly identical in the three scenarios, the observed 
data provide markedly different information as to how 

well the estimated simple slopes fit the data. For exam-
ple, in Figure 4a, both X and Z are multivariate normally 
distributed predictors, and the simple-slopes estimates 
capture the data fairly well and provide evidence for a 
disordinal interaction. However, in Figure 4b, X and Z 
were simulated from exponential distributions (skew 
of X = 2.61, skew of Z = 2.35). The positive skew in 
both variables means that almost no data existed at 1 
or 2 SD below the mean of X, and the simple-slopes 
effect when Z is 1 SD below the mean in fact represents 
no individuals in the observed data. Finally, Figure 4c 
shows how simple slopes can suggest an interaction 
effect that does not exist in the data. The data for this 
plot were instead generated from a model in which X 
had a quadratic effect but the interaction coefficient 
was zero, which is suggested by the parabolic pattern 
shown in this display. Because X and Z were strongly 
correlated in this example (r = .52), XZ and X2 were con-
founded, and a significant interaction was erroneously 
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Fig. 3. Illustration of the effect of sample size on uncertainty in simple-slopes estimates: simple slopes with 95% confidence regions for 
(a) the simulated example in Table 1 (N = 150) and (b) the same parameterization with a larger sample size (N = 500). For Z, low refers to 
1 SD below the mean, and high refers to 1 SD above the mean.
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tors (a) are normally distributed, (b) have skewed distributions, or (c) are strongly correlated (i.e., the interaction is confounded 
with a quadratic effect of the focal predictor). For Z, low refers to 1 SD below the mean, and high refers to 1 SD above the mean.
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detected (Cohen et al., 2003; MacCallum & Mar, 1995). 
It has been strongly recommended that researchers 
carefully consider their data and plot interactions at 
meaningful levels of the moderator to ensure that the 
simple-slopes effects they report appropriately reflect 
real data (Aiken & West, 1991; Dawson, 2014); plotting 
observed data may help researchers meet this recom- 
mendation.

The marginal-effects approach

Marginal-effects (or regions-of-significance) plots (e.g., 
Berry et al., 2012; Preacher et al., 2006) are commonly 
used in combination with the J-N analytic approach to 
interactions. These plots depict the simple-slope coef-
ficient of the focal variable and its 95% confidence 
region against values of the moderator. They indicate 
the significance, uncertainty, magnitude, and direction 
of the simple slope across a full hypothetical range of 
the moderator variable, often a range from 3 SD below 
to 3 SD above the mean (e.g., Fig. 2 in Preacher et al., 
2006). Whereas simple-slopes plots display conditional 
effects at only select levels, marginal-effects plots 
ensure that an interaction is fully explored by showing 
how the simple-slope coefficient of a focal predictor 
changes across the entire range of the moderator. For 
instance, Figure 5 is a marginal-effects plot of the inter-
action in Example 1. When the moderator is 2.30 SD 
below the mean or lower, or 0.60 SD below the mean 
or higher, the 95% CI does not contain 0. The plot thus 
indicates that X is negatively associated with Y when Z 
is very low (at least 2.30 SD below the mean) and 

positively associated with Y when Z is −0.60 SD below 
the mean or greater. Note that, by comparison, Figure 
2 fails to provide evidence of the reverse effect in the 
same data when Z is “low” (1 SD below the mean) 
because the simple negative slope is significant only 
when Z is 2.30 SD below the mean or lower.

Although marginal-effects plots aid in detecting and 
communicating interaction effects that may otherwise 
be missed, they fail to indicate whether or how much 
data are represented within the graphed regions and 
therefore may suggest effects that are not (or are very 
minimally) supported by the data. For instance, in the 
data from Example 1, very few data points are observed 
when Z is lower than 2.30 SD below the mean (see Fig. 
5). Only two observations (1.3% of the sample) fall 
within the region of significance where the slope is 
negative, and there is no indication of the extent to 
which these observations are consistent with the esti-
mated model. Indeed, in an often-cited article describ-
ing the use of the J-N technique in psychology, the 
authors provided a figure in which one of the tails of 
the displayed moderator Z had few to no observations, 
but this was noted only in the text (Preacher et  al., 
2006). Restricting the range of the horizontal axis to the 
observed range of Z and including a marginal rug of 
the observed data, as in Figure 5, helps address this 
concern (e.g., Berry et al., 2012). The inclusion of the 
observed data might lead us to infer that they do not 
support the conclusion that X has a significant effect 
on Y when Z is 2.30 SD below the mean or lower.

Moreover, despite their utility, marginal-effects plots 
have been provided less often than simple-slopes plots 

−50

0

50

−3 −2 −1 0 1 2 3
Z

Si
m

pl
e 

Sl
op

e 
of

  X

Fig. 5. A marginal-effects (or regions-of-significance) plot of Example 1. The plot shows 
the marginal effect of X on Y (i.e., the simple slope of X) across a range of the moderator 
variable Z; the shaded area indicates the 95% confidence region for the marginal effect. The 
marginal rug of Z on the horizontal axis indicates the frequency of observed values of Z 
across its displayed range.
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in publications reporting tests of moderation. For 
instance, we randomly sampled 50 of the 253 articles 
that were published in 2016 and cited the article in which 
Preacher et al. (2006) described the use of the J-N tech-
nique and marginal-effects plots. In brief, of these 50 
articles, 38 (76%) provided a simple-slopes plot at two 
or more levels of the moderator to supplement their 
analyses. Only 10 (20%) made any mention of conduct-
ing a regions-of-significance analysis, and only 4 (8%) 
provided a marginal-effects plot depicting regions-of-
significance results. In other words, among a sample of 
50 publications citing a seminal manuscript describing 
the use of marginal-effects plots, only 8% actually used 
that kind of display in their article, and 76% used a less 
descriptive display. These results illustrate a substantial 
gap between the development of an advanced approach 
to analysis and its implementation.

We suspect that the unintuitive nature of marginal-
effects plots has limited their widespread adoption. 
Marginal-effects plots are ultimately used to understand 
the range of a moderator for which a focal predictor is 
statistically significantly associated with an outcome (as 
well as the degree of uncertainty in the association); 
thus, this information is somewhat redundant with 
information provided by a text description of results 
obtained using the J-N technique. Moreover, readers 
are mostly interested in using displays to infer the pre-
dicted value of the dependent variable at meaningful 
values of X and Z. Common visuals for presenting 
effects (e.g., bar graphs, histograms, bivariate scatter-
plots, and simple-slope plots) meet this need by assign-
ing the values of greatest interest (i.e., values of the 
dependent variable) to the vertical axis and the primary 
predictor variable to the horizontal axis. However, 
marginal-effects plots allocate a relatively unintuitive 
value (the simple slope) to the vertical axis and the 
predictor of lesser importance (the moderator) to the 
horizontal axis, and omit information about the model-
predicted value of the dependent variable entirely. We 
encourage researchers to use marginal-effects plots to 
support regions-of-significance analyses and, when 
doing so, to include overlaid data on these plots. How-
ever, given the limitations of such plots, providing addi-
tional displays may further aid in communicating an 
interaction effect.

Summary of present practices

Visual displays of interactions can substantially improve 
inferences, communication, and transparency, and also 
can help in diagnosing problems in data analysis. 
Although simple-slopes and marginal-effects plots 
strengthen the interpretation of moderation analyses in 
some ways, they have several limitations. In the next 
section, we describe an approach to create displays of 

interactions that utilize the strengths of present prac-
tices and address the concerns we have highlighted in 
our critiques.

Improving the Visual Display of 
Interactions: interActive

We created an open-source analysis and data-visualization 
application that builds on simple-slopes and marginal-
effects plots to display all quantities of interest, uncer-
tainty in the displayed estimates, and the data underlying 
an interaction (https://connorjmccabe.shinyapps.io/
interactive/). We created this application, called inter-
Active, using the freely available statistical program R 
(R Development Core Team, 2016) in the Shiny Web 
application framework (Chang, Cheng, Allaire, Xie, & 
McPherson, 2017). The graphics were created using the 
ggplot2 graphics package (Wickham, 2009). The inter-
Active application provides data-upload functionality 
and allows users to specify and analyze OLS regression 
models with two-way interaction effects. The present 
functionality allows for either continuous linear or qua-
dratic focal predictors and either continuous or binary 
categorical moderator predictors. The application 
accommodates the specification of covariates (i.e., con-
trol variables) and was designed to be usable by 
researchers at all levels of quantitative expertise. It can 
be used to conduct regions-of-significance analyses for 
interactions of continuous variables and creates marginal-
effects plots of the results, with marginal rugs indicating 
observed data (e.g., Fig. 5).

The interActive application is based on the concept 
of small multiples (Tufte, 2001). An individual plot is 
created for each of several simple slopes (e.g., Fig. 6). 
This facilitates the display of a broad range of simple-
slope effects, observed data, and measures of uncer-
tainty. Because the design of all plots is identical except 
for the level of the moderator, a viewer’s attention is 
directed toward the change in pattern across multiples, 
which enables the viewer to understand the nature of 
the interaction depicted. Using small multiples allows 
indicators of observed data and measurement uncer-
tainty to be included in each plot. Additionally, users 
can specify the level of the moderator for each multiple. 
This provides users with flexibility in deciding the num-
ber of levels of the moderator and the specific values 
of the moderator at which they will probe the interac-
tion, so as to best characterize the observed data.

The functionality of interActive is leveraged to dis-
play the observed data that are most representative of 
each simple slope. For each small multiple representing 
a given moderator value, the displayed data points 
reflect the bivariate relation between the focal predictor 
and the dependent variable. This relation is shown 
within a range of the moderator that begins at half the 

https://connorjmccabe.shinyapps.io/interactive/
https://connorjmccabe.shinyapps.io/interactive/
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distance from the value of the moderator at the next 
lower multiple and ends at half the distance from the 
value of the moderator at the next higher multiple. For 
instance, in a series of multiples depicting simple slopes 
at −1, −0.5, 0, +1, and +2 standardized units from the 
mean of the moderator, the −1-SD multiple would 
depict only observations with values of the moderator 
at −0.75 SD or lower; the −0.5-SD multiple would cor-
respond with observations between −0.25 and −0.75 
SD; and so forth. Limiting each multiple to a particular 
data space makes it possible to evaluate each simple 
slope on whether it represents real data.

We implemented additional design choices to allow 
for more nuanced evaluation of the depicted effect. For 
instance, interActive specifies the limits of the x-axis of 
each multiple as the minimum and maximum values of 
the focal variable, in order to display each simple slope 
across the full range of the focal predictor. Also, inter-
Active computes the crossover point (using Equation 
1) and displays it on each small multiple so that viewers 
can use it in conjunction with the observed data to 
determine the degree of evidence for a crossover effect. 
In addition, each multiple displays the coefficient and 
95% CI of the simple slope to provide readers with a 
text description of the displayed slope. Each multiple 
also displays the percentile corresponding with the 
specified level of the moderator to aid readers in 

evaluating whether the depicted simple-slope effect is 
sensible given the data. Finally, we added horizontal 
dashed lines at the minimum and maximum observed 
values of the outcome variable to aid extrapolation of 
each prediction line.

For each simple slope, interActive computes the 95% 
CI for the predicted value of Y conditional on each 
observed value of X. If covariates are included, they 
are held constant at their respective means when these 
estimates are derived. These CI estimates are used to 
plot a confidence region, the area in which the true 
regression line is expected to fall 95% of the time. The 
CI for ŷ i conditional on the value of the predictor vari-
ables is given by the following equations (Cohen et al., 
2003):

 CI ˆ ˆ
ˆ ,y yii i
y t n k SE= ±

−
− −








1

2
1

α  (2)

and

 SEy i iiˆ
ˆ ( ) ,= −σ x X X xT T 1

 (3)

where 1

2

− α  is the two-tailed probability for a given α, 

n – k – 1 is the degrees of freedom, X is an n × k matrix 
of the predictor variables, xi is a p × 1 column vector 
of individual observations, σ̂ is the residual standard 
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Fig. 6. Illustration of small multiples created by interActive for Example 1 using multivariate normal predictors. Simple slopes are provided for 
levels of the moderator 2 SD and 1 SD below the mean, at the mean, and 1 SD and 2 SD above the mean. Each graphic shows the computed 
95% confidence region (shaded area), the observed data (gray circles), the maximum and minimum values of the outcome (dashed horizontal 
lines), and the crossover point (diamond). The x-axes represent the full range of the focal predictor. CI = confidence interval; PTCL = percentile.
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error, and T is defined as the transpose operator. For 
each simple slope, interActive computes 95% CIs for ŷ i 
for hypothetical values of the focal predictor across the 
observed range. These values are then used as the 
bounds of the shaded polygon that depicts the confi-
dence region of the regression line for that simple 
slope.

Appendix A provides an example of the computation 
of the confidence interval for a predicted value in a 
bivariate case. Equivalently, and perhaps more intui-
tively for many researchers, this interval can also be 
understood as the 95% CI of the intercept in a regres-
sion model, and one could center the focal predictor 
around different values to derive points that follow the 
edges of the confidence region. Table 2 and Figure 7 
illustrate this point in a bivariate case using Example 
1. Note that in the standard regression output provided 
in Table 2, the intercept value when X is centered at zero 
(i.e., the value of ŷ i) is 44.46, and the standard error is 
4.32. Using Equation 2, given 148 (n – k – 1) degrees of 
freedom and a corresponding t value of 1.98, we can 

compute that the 95% CI for ŷ  when X is zero ranges 
from 35.91 to 52.98. We can compute the CI in the case 
when X is centered at any other value; for instance, 
when X is centered at 1 (see Table 2), the intercept (ŷ i ) 
is 71.95, the standard error of this value is 6.49, and the 
corresponding CI ranges from 59.13 to 84.77. Note that 
the lower and upper limits of ŷ  when X is centered at 
0 and 1 correspond with the points denoted on the 
confidence region in Figure 7; if this process were 
repeated across the full displayed range of X, these 
values would circumscribe the 95% confidence region.

The interActive plot in Figure 6 was simulated from 
Example 1 using multivariate normal predictors. Note that 
this display provides much of the same information found 
in Table 1 (e.g., estimates of slopes, intercepts, and con-
fidence) while also showing more thoroughly how well 
the model represents the data. Figure 8a displays corre-
sponding estimates simulated from exponentially distrib-
uted predictors. Note that the plot elements added by 
interActive make it readily apparent that the data are not 
well represented by these graphs; they suggest that the 

Table 2. Simulated Results of a Bivariate Regression With the Predictor Centered 
at Different Values (N = 150)

Parameter Estimate SE 95% CI β t p

X centered at 0
Intercept 44.46 4.32 [35.91, 52.98] 10.29 < .001
X coefficient 27.51 4.84 [17.94, 37.07] 0.423 5.682 < .001

X centered at 1
Intercept 71.95 6.49 [59.13, 84.77] 11.09 < .001
X coefficient 27.51 4.84 [17.94, 37.07] 0.423 5.682 < .001

Note: The intercept values differ across transformations of X. The confidence intervals (CIs) in 
boldface correspond with the points indicated on the confidence region in Figure 7.
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Fig. 7. Plot of the bivariate relation between X and Y in Example 1 and the confidence 
region of the linear estimate. The small squares indicate the lower and upper limits of the 
95% confidence interval of ŷ  when X is (centered at) 0 and (centered at) 1 (see Table 2).
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Fig. 8. Small multiples created by interActive for Example 1 in a simulation with exponentially distributed predictors. In (a), simple slopes 
are provided for levels of the moderator 2 SD and 1 SD below the mean, at the mean, and 1 SD and 2 SD above the mean. The observed 
data are better characterized in (b), which provides simple slopes for a more restricted range of values of the moderator. Each graphic shows 
the computed 95% confidence region (shaded area), the observed data (gray circles), the maximum and minimum values of the outcome 
(dashed horizontal lines), and the crossover point (diamond). The x-axes represent the full range of the focal predictor. CI = confidence 
interval; PTCL = percentile.
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researcher should consider values of the moderator that 
are more representative of the data (e.g., Fig. 8b). Appen-
dix B provides an example of how interActive can 
enhance understanding of an interaction effect observed 
in real data.

Discussion

We have reviewed current practices for graphically dis-
playing interaction effects and provided tools and 
guidelines for improving displays to affirm and com-
municate statistical results of moderation analyses. We 
have included simulated examples showing the condi-
tions under which improper visual displays can affect 
inference and have shown how the interActive applica-
tion can be used to address these concerns. To facilitate 
understanding of the full nature of interaction effects, 
we recommend the J-N technique and marginal-effects 
plots as standard analytic strategies for probing interac-
tions of continuous variables across the full range of 
the moderator (Preacher et  al., 2006; Roisman et  al., 
2012). We also encourage researchers to continue pro-
viding displays of simple-slopes effects to communicate 
the substantive nature of interactions and to construct 
these displays bearing in mind the principles of graphic 
integrity we have described here. These practices will 
support the validity of inferences made while also com-
municating them with appropriate precision and clarity. 
When advances in both statistical and graphic 
approaches are employed, researchers and readers alike 
can evaluate the nature of an interaction effect with 
greater understanding and confidence.

We consider the practices we have described to be a 
first step toward improving visual displays of interactions. 
For instance, we aim to extend these practices to display-
ing interactions in nonlinear models given that interpret-
ing simple effects is even less straightforward in nonlinear 
than in linear cases (Ai & Norton, 2003; Karaca-Mandic, 
Norton, & Dowd, 2012). Similarly, these principles should 
also be extended to interactions in structural equation 
and multilevel modeling (Preacher et al., 2006). We hope 
that educators, editors, and researchers will use the inter-
Active application and the principles we have detailed to 
improve understanding and methodological rigor in mod-
eration analyses. We urge researchers to consider data 
visualization as a crucial (rather than auxiliary) step in 
the scientific process.

Appendix A: Computing the Confidence 
Interval of a Predicted Value of a 
Dependent Variable
In this appendix, we illustrate how to compute an esti-
mate and 95% confidence region for ŷi. We use a ran-
domly sampled subset (n = 5) from the data generated 

in Example 1 to illustrate computations in matrix-algebra 
form.

Assume the following data:

We are regressing Y on X, as follows:

y b b x ei i i= + +ˆ ˆ
0 1 .

In matrix form, this can be equivalently understood as

ŷ = Xb̂ + e,

where b is a 2 × 1 vector of unstandardized coefficients 
and e is an n × 1 vector of residuals. Estimating this 
model in ordinary least squares regression yields the esti-
mates shown in Table A1, which can be obtained directly 
from standard statistical software.

Suppose we arrange our predictor variable into a 5 × 
2 matrix X, which includes a column of 1s so that the 
intercept is included in the linear combination:

X =

−





















1 1 53

1 0 40

1 0 95

1 1 13

1 0 95
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We can then create a row of hypothetical values of our 
predictor to obtain the value and 95% confidence interval 
of ŷi. Assuming we wish to use the hypothetical value of 
X = 0.5, we represent this as a 2 × 1 column vector:

xi =









1

0 5.
,

where the first row of this vector is a placeholder value of 
b0 and the second row represents the hypothetical value 
of the predictor X. Note that we can multiply xT

i by a  

X Y

−1.29 48.80
0.64 4.78
1.20 81.38
1.37 112.00

−0.70 67.79

Table A1. Linear-Model Results for the Effect of X on Y  
(n = 5)

Parameter Estimate SE t p

Intercept (b0) 60.03 19.75 3.04 .06
X coefficient (b1) 11.99 18.20 0.66 .56

Note: The residual standard error is 43.03, and R2 is .126.
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2 × 1 vector of our model’s coefficients to obtain ŷi given 
X = 0.5:

ˆ .
.
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The formula for the standard error of this estimate 
(Equation 3) is
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Obtaining the inverse of the inner product (XTX)–1, round- 
ed to two decimal places, yields
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Once this matrix is computed, we can apply this quantity 
to our formula, in concert with the values of σ̂ and xi 
obtained earlier:

SEyiˆ
.

.

.

.
. . .=


















 [ ] =43 03

1

0 5

0 20 0

0 0 18
1 0 5 19 80

Given ŷi = 66.03 and t n k
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α
 = t(0.025, 3) = 

3.18, we can now use Equation 2 to compute a 95% con-
fidence region for this value:
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These results suggest that when X = 0.5, we are 95% 
confident that the predicted value of Y falls between 
3.02 and 129.03. Conducting these computations across 
a range of xi quantities would create points that circum-
scribe the confidence region of a plotted linear estimate.

The R code for recreating these computations and 
generating a plot depicting these values is available at 
https://github.com/connorjmccabe/InterActive/blob/
master/Appendix%20A%20code/AppendixA_code.R.

Appendix B: Example of Using 
interActive With Real Data

Here we illustrate how using interActive to depict a pre-
viously reported interaction effect can enhance interpre-
tation of the data. The example is drawn from a study 
of 491 young adults who were undergraduate students 
in the Pacific Northwest region of the United States. The 
study examined whether the effect of sensation seeking 
on the frequency of alcohol-related problems differed 
across levels of alcohol use (see K. M. King, Karyadi, 
Luk, & Patock-Peckham, 2011, for more details). Note 
that the original authors used semicontinuous regres-
sion given that the outcome variable was zero inflated 
and overdispersed, and violated ordinary least squares 
(OLS) assumptions. Therefore, in this example, we use 
parametric bootstrapping to simulate a new condition-
ally normal alcohol-problems variable that was based on 
an OLS model from the original data. Moreover, we do 
not include the covariates included in the original report 
because these variables were unavailable in the current 
data set. Nonetheless, the estimate of the interaction 
effect we obtained (b = 0.082, 95% confidence interval, 
CI = [0.025, 0.140]) was nearly identical to that of the 
original report (b = 0.071, 95% CI = [0.016, 0.126]).

Figure B1a is an adaptation of the simple-slopes display 
from the original article. In this graphic, the slope for the 
effect of sensation seeking on alcohol-related problems 
was plotted at low (1 SD below the mean), mean, and 
high (1 SD above the mean) levels of alcohol use. The 
reader can infer several effects. First, the fact that the 
graphed lines are higher on the vertical axis as the level 
of alcohol use increases suggests a strong main effect of 
alcohol use on problems. Second, this plot shows that 
when alcohol use was low, a 1-unit increase in sensation 
seeking corresponded with about a 1-unit decrease in the 
level of alcohol-related problems, suggesting that sen-
sation seeking may be protective against alcohol-related 
problems when alcohol use is low. At mean levels of 
alcohol use, this effect diminished. Because this simple 
slope is approximately flat, the graphic suggests that sen-
sation seeking was unrelated to alcohol-related problems 
at average levels of alcohol use. In contrast, at high lev-
els of drinking, sensation seeking appeared to increase 
the risk of alcohol-related problems (specifically, a 1-unit 
increase in sensation seeking at high levels of use cor-
responded with about a 3-unit increase in problems). 
Third, this graphic can be used to examine estimates of 
alcohol-related problems conditional on specific hypo-
thetical values of sensation seeking and alcohol use. For 
instance, the model predicts that an individual reporting 
an average level of both drinking and sensation seeking 

https://github.com/connorjmccabe/InterActive/blob/master/Appendix%20A%20code/AppendixA_code.R
https://github.com/connorjmccabe/InterActive/blob/master/Appendix%20A%20code/AppendixA_code.R
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would experience about 18 alcohol problems per year. An 
individual who has a high level of alcohol use and is 1 SD 
above the mean in sensation seeking is predicted to expe-
rience about 39 alcohol problems per year, and so on.

Using this graphic alone, one might infer that the 
effect of sensation seeking on alcohol-related problems 
reverses depending on how much one drinks. That is, 

sensation seeking appears to be protective when use is 
low and a risk factor when use is high, and it may or may 
not be associated with alcohol-related problems when 
use is at average levels. This effect is ostensibly sup-
ported by a regions-of-significance analysis: The slope 
of the effect of sensation seeking on alcohol-related 
problems is significant and negative when alcohol use is 
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Fig. B1. The relation between sensation seeking and the number of alcohol-related problems 
experienced per year across multiple levels of alcohol use. The graph in (a) shows the simple 
slopes for the relation between the standardized level of sensation seeking (on the x-axis) 
and the number of alcohol-related problems (on the y-axis) at low (1 SD below the mean), 
mean, and high (1 SD above the mean) levels of alcohol use (adapted with permission from 
K. M. King, Karyadi, Luk, & Patock-Peckham, 2011). The graph in (b) provides a marginal-
effects display for the same interaction effect. The x-axis indicates the standardized level of 
the moderator, and the vertical dashed lines indicate the levels of the moderator at which 
the focal variable becomes significantly associated with the dependent variable. The 95% 
confidence region is indicated by the shaded area. A marginal rug showing the frequency of 
different levels of alcohol use is included.
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Fig. B2. Small-multiples depictions of the interaction effect reported by K. M. King, Karyadi, Luk, and Patock-Peckham (2011), who 
examined the interactive effect of sensation seeking and alcohol use (the moderator) on the number of alcohol-related problems experi-
enced per year. The small multiples in (a) illustrate the interaction across the range from 2 SD below to 2 SD above the mean of alcohol 
use. In (b), the small multiples have been tailored to reflect the distribution of the moderator, ranging from 1 SD below to 2 SD above 
the mean. Each graphic shows the computed 95% confidence region (shaded area), the observed data (gray circles), and the maximum 
and minimum values of the outcome (dashed horizontal lines). CI = confidence interval; PTCL = percentile.
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approximately 2.15 SD below its mean and is significant 
and positive when use is 0.35 SD higher than its mean 
(Fig. B1b).

Although the effects presented using interActive’s 
small multiples (see Fig. B2) are similar to those 
depicted in Figure B1a, more nuanced information 
about these effects is available from the small multiples 
because they include confidence regions and more 
simple slopes and also display the observed data. For 
instance, as does Figure B1a, Figure B2 indicates that 
greater alcohol use is associated with more negative 
alcohol consequences and that the effect of sensation 
seeking on alcohol-related problems becomes stronger 
at higher levels of use. Also, as in the case of Figure 
B1a, the simple slopes provided can be used to deter-
mine the predicted level of alcohol-related problems 
conditional on specific values of sensation seeking and 
alcohol use. But in the case of Figure B2, predictions 
across a greater range of conditional values are pos-
sible because the x-axis is extended to include the full 
observed range of the data.

The added elements in the display also increase the 
transparency of the data and clarify the inferences that 
can be made from the results. For instance, though J-N 
analyses indicated a significant protective effect of sensa-
tion seeking when alcohol use was 2.15 SD below the 
mean (b = −2.93, 95% CI = [−5.84, −0.02]), Figure B2a 
shows that this effect in fact represents no observations 
of alcohol use (i.e., there are no data at 2 SD below 
the mean, which corresponds with the 0th percentile of 
alcohol use). Similarly, whereas Figure B1 suggests that 
sensation seeking was protective against alcohol-related 
problems at 1 SD below the mean of alcohol use, Figure 
B2a shows that this effect was not significant (b = −0.94, 
95% CI = [−2.72, 0.84]). In contrast, the figure shows that 
when alcohol use was at the mean, sensation seeking 
had no observed effect on alcohol-related problems (b = 
0.80, 95% CI = [−0.52, 2.11]), and when use alcohol use 
was at 1 SD above the mean, the effect was significant 
and positive (b = 2.53, 95% CI = [0.72, 4.34]). The graphic 
also shows that among individuals 2 SD above the mean 
of alcohol use, a 1-unit increase in sensation seeking was 
associated with slightly more than 4 additional reported 
alcohol-related problems per year (b = 4.27, 95% CI = 
1.48, 7.05]). Note that although no observed data existed 
at 2 SD below the mean of alcohol use, real data are rep-
resented at 2 SD above the mean. However, the simple 
slope does not capture the data range in this small mul-
tiple particularly well, and a researcher may opt to inter-
pret this slope tentatively.

In summary, Figure B2a suggests a substantively dif-
ferent conclusion compared with the graphics in Figure 
B1. Whereas the plots in Figure B1 suggest that sensation 
seeking was protective against alcohol-related problems 

at low levels of alcohol use, the revised graphic shows 
that this inference is in fact unsupported. Instead, they 
suggest that the effect of sensation seeking on alcohol-
related problems is not significantly different from zero 
at mean levels of alcohol use or lower, but is significant 
and positive at both 1 and 2 SD above the mean level 
of alcohol use. We can consider revising the interActive 
graphic to depict this effect across a more representative 
range of the moderator, as in Figure B2b.

Action Editor

Pamela Davis-Kean served as action editor for this article.

Author Contributions

C. J. McCabe generated the idea for the study. C. J. McCabe 
programmed the interActive application and created code for 
all the figures, and D. S. Kim verified the accuracy of the 
code. C. J. McCabe and K. M. King jointly created simulation 
code for the manuscript. C. J. McCabe wrote the first draft of 
the manuscript, and all the authors edited the manuscript.  
K. M. King and D. S. Kim provided feedback on the function-
ality and usability of the application. All the authors approved 
the final version of the submitted manuscript.

Declaration of Conflicting Interests

The author(s) declared that there were no conflicts of interest 
with respect to the authorship or the publication of this 
article.

Funding

This research was partially supported by a grant from the 
National Institute on Drug Abuse (DA040376) to C. J. McCabe. 
The content of this article is solely the responsibility of the 
authors and does not necessarily represent the official views 
of the funding agency.

Open Practices

 

All data and materials have been made publicly available via 
GitHub and can be accessed at https://github.com/connorjmc 
cabe/InterActive. The complete Open Practices Disclosure for 
this article can be found at http://journals.sagepub.com/doi/
suppl/10.1177/2515245917746792. This article has received 
badges for Open Data and Open Materials. More information 
about the Open Practices badges can be found at http://www 
.psychologicalscience.org/publications/badges.

Note

1. Though we do not include covariates (control variables) in 
this example, any number of covariates can be included to 
explain additional error variance in the outcome variable or to 
examine the effect of variables of interest on a dependent vari-
able above and beyond the effects of these covariates. As is the 
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case with any other predictor, the interaction coefficient will be 
affected by the inclusion of a covariate to the degree that (a) the 
interaction term and its constituent lower-order variables are 
highly intercorrelated with the covariate (i.e., multicollinearity) 
and (b) the variance in the dependent variable is explained by 
the covariate (Cohen, Cohen, West, & Aiken, 2003).
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