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Multiple Regression/
Correlation With Two or More

Independent Variables

3.1 INTRODUCTION: REGRESSION AND CAUSAL MODELS
In Chapter 2 we examined the index of linear correlation between two variables, the Pearizz
product moment correlation r and the regression equation for estimating Y from X ; Beci(iﬁn
of the simplicity of the two-variable problems, we did not need to go 1nto fietall regarwe rg
the interpretive use of these coefficients to draw substantive inferences. The mfere.ncesl .
limited to the unbiased estimation of their magnitudes in the population; the assertion, lﬂt !
case of the regression coefficient, that one variable was, in part, related to or dependel;rom
the other; and the demonstration of the significance of the departure of the coefficients i
zero. When we move to the situation with more than one independent variable, hOWC"eer;
inferential possibilities increase more or less exponentially. Therefore, it always behoo‘;icit as
investigator to make the underlying theoretical rationale and goals of the analysis a5 exali1 s
possible. Fortunately, an apparatus for doing so has been developed in the form (_Jf th"’ ally
of causal models. Because the authors advocate the employment of these models 1n Vlfmsim %
investigations conducted for the purpose of understanding phenomena (as opposed wA more
prediction), this chapter begins with an introduction to the use of causal models-
complete presentation is found in Chapter 12.

3.1.1 What Is a Cause? 5
roponen

Conceptions of causality and definitions of cause and effect have differed amf)ng pa workin?
of causal analysis, some offering no explicit definitions at all. Causal analysiS asof comm®”
method apparently requires no more elaborate a conception of causality than t.hat ents:
usage. In our framework, to say that X is a cause of Y carries with it four require™

1. X precedes Y in time (temporal precedence). mcahaﬂism )

2. Some mechanism whereby this causal effect operates can be posited (causal e a\’erage

3. A change in the value of X is accompanied by a change in the value of Y of
(association or correlation).

4. The effects of X on ¥ can be isolated from the effects of other potential v
(non-spuriousness or lack of confounders).

y
ariables 2

A

64



3.1 INTRODUCTION: REGRESSION AND CAUSAL MODELS 65

When X or Y is a quantitative variable (e.g., dollars, score points, minutes, millimeters,
percentile ranks), the meaning of value is obvious, When X is a categorical scale (i.e., a collec-
tion of two or more qualitative states or groups), a change in value means a change from one state
to another (e.g., from Protestant to Catholic or Protestant to non-Protestant, from depressed
to not depressed, or from one diagnosis to another). When Y is a dichotomy (schizophrenia-
nonschizophrenia), a change in value on the average means a change in proportion (e.g.,
from 10% schizophrenia for some low value of X to 25% schizophrenia for some higher
value).

The third proposition should not be simplified to mean, If you change X, ¥ will change.
This may, of course, be true, but it need not be. First, it may not be possible to manipulate X.
For example, boys have a higher incidence of reading disability than girls; here sex (X) causes
reading disability (Y), but it is meaningless to think in terms of changing girls into boys.
Second, even when X can be manipulated, the way it is manipulated may determine whether
and how Y changes, because the nature of the manipulation may defeat or alter the normal
causal mechanism whereby X operates.

The models that we are employing have their roots in the path-analytic diagrams developed
by the geneticist Sewell Wright (1921) for untangling genetic and nongenetic influences. These
are often currently referred to as structural models or structural equation models. The purpose
of the models is to make explicit exactly what the investigator has in mind about the variables
and the meaning of their interrelationships. As such, they contribute to the clarity and internal
consistency of the investigation. It should be recognized at the outset, however, that a causal
model may never be established as proven by a given analysis; all that may be said is that the
data are to some extent consistent with a given model or that they are not. Thus, the value of
a given model is determined as much by the logic underlying its structure as by the empirical
demonstrations of the fit of a given set of data to the model.!

3.1.2 Diagrammatic Representation of Causal Models

The basic rules for representing a causal model are quite simple.? Causal effects are represented
by arrows going from the cause to the effect (the “dependent” variable). Usually, by convention,
the causal flow is portrayed as going from left to right. In a simple model the independent
variables are considered exogenous or predetermined variables. These variables are taken
3 given, and the model requires no explanation of the causal relationships among them.
The relationships among these variables are represented by curved double-headed arrows
Connecting each pair,
s To illustrate the use of a causal diagram, let us expand the academic example employed
In Chapter 2, The investigator has collected the data on number of publications and time
Fexpressed in number of years) since Ph.D. to determine the influence of productivity (as
Indexed by publications) and seniority (time since Ph.D.) on academic salaries. The resulting
causal diagram is shown in Fig. 3.1.1. In this simple model we assert that academic salary is
"0 part determineq by time since Ph.D. and in part by publications. These latter two variables
May be correlated with each other, but no causal explanation is offered for any relationship
e“’f’een them. However, salary is assumed not to cause changes in numbers of publications
f0r in time since ph.p.

\

1 ; : :
zThf:' lf)glcal frame and historical development of causal models are discussed further in Section 12.1.
canse, 1S Initial discussjop js limited to elementary models and omits consideration of the effects of unmeasured
S and the assumptions underlying the models, for which see Chapter 12.

;
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Publications

f Salary

Years since Ph.D. h

FIGURE 3.1.1 Causal model of academic salary example.

3.2 REGRESSION WITH TWO INDEPENDENT VARIABLES

B To provide the estimates of effects required by our causal model we need a weight for each
= of our exogenous variables whose application will account for as much of the variance of our
=3 dependent variable as possible. Recalling that the regression equation, ¥ = B, + By, wa
: designed to be such an estimate for a single independent variable, we may anticipate thy
3 similar procedure may produce the appropriate weights for two independent variab]es,

For example, suppose we have gathered the data in Table 3.2.1 to estimate the mode]
for academic salaries presented in Fig. 3.1.1> The correlation between salary (Y) and fige
since Ph.D. (X;) is .710 and By, is therefore .710($7889.77/4.577) = $1224 per year. The
= correlation between salary and number of publications (X, ) is .588, and its regression coefficient

v is therefore .588($7889.77/13.823) = $336 per publication (Table 3.2.1). If X; and X, were
. uncorrelated, we could simply use By, and By, together to estimate Y. However, as might be
s expected, we find a tendency for those faculty members who have had their degrees longer to
A have more publications than those who more recently completed their education (rp = .657).
: Thus, X, and X; are to some extent redundant, and necessarily their respective estimates, I
9 and ¥, will also be redundant. What we need to estimate Y optimally from both X, and X, isan
equation in which their redundancy (or more generally the relationship between X; and X) is

taken into account. The regression coefficients in such an equation are called partial regression
5 coefficients to indicate that they are optimal linear estimates of the dependent variable (Y) when
used in combination with specified other independent variables.* Thus, By, is the partidl

o o=
= CHO3EX01

— regression coefficient for ¥ on X; when X, is also in the equation, and By, is the partid

b5 regression coefficient for Y on X, when X; is also in the equation. The full equation is
(3.2.1) Y = By1,X) + Byy1 X, + Boy.1

h The partial regression coefficients or B weights in this equation, as well as the regression

3 constant By, are determined in such a way that the sum of the squared differences betwee?

(actual) ¥ and (estimated) ¥ is 2 minimum. Thus, the multiple regression equation is defined b);

the same ordinary least squares criterion as was the regression equation for a single independe,"

variable. Because the equation as a whole satisfies this mathematical criterion, the termp“g;ﬁt
regression coefficient is used to make clear that it is the weight to be applied to an indepe?

0
3Again, the number of cases has been kept small to enable the reader to follow computations with ea:;,;in
advocacy of such small samples is intended (see sections on precision and power). We also present pop
estimates of variance and sd, rather than sample values, in conformity with computer statistical packages: .
In this and the remaining chapters the dependent variable is identified as Y and the individual indep"—“dent L

. . . . i b Lheil
asX Wllth a numerical subscript, that is X, X,, etc. This makes it possible to represent independent sl
| subscripts only, for example Byx3 becomes By;.

4 s B e i

fﬁH(.areafuj.r we may refer to bivariate statistics such as correlations or regression coefficients 25
3 coellicients, in contrast to partial coefficients when other IVs are in the equation.
-

»
.‘Zer(yord"’

-
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TABLE 3.2.1
Seniority, Publication, and Salary Data on 15 Faculty Members
Time No. of
since Ph.D. (X;) Publications (X,) Salary (Y)

3 18 $51,876
6 3 54,511
3 2 53,425 v =710 (72, = .505)
8 17 61,863 ryy = 588 (r2, = .346)
9 11 52,926 rp = 657
6 6 47,034

16 38 66,432 ¥, = $1,224X, + $43.659

10 48 61,100
2 9 41,934 Y, = $336X, + $46,357
5 22 47,454
5 30 49,832
6 21 47,047
7 10 39,115

11 27 59,677

18 37 61,458

M 7.67 19.93 $53,046
sd 4.58 13.82 $8,166

variable (IV) when one or more specified other IVs are also in the equation. Thus By, , indicates
the weight to be given X; when X, is also in the equation, By, ; is the X, weight when }.('1
and X; are in the equation, By, ;5 is the X, weight when X;, X,, and .X3 are also_used in
the equation for ¥, and so on. The weights for the IVs taken together with B, constitute the
Decessary constants for the linear regression equation. . '

When the regression equation is applied to the IV values for any given observation, the
result will be an estimated value of the dependent variable Q’ ). For any given set of data on
Wwhich such an equation is determined, the resulting set of ¥ values will be as closc? to’}be
observed Y values as possible, given a single weight for each IV. “As close as possible” is
defined by the least squares principle.

For ogr example %f estiglating salary (Y¥) from time since Ph.D. (X;) and number of
Publications (X,), the full regression equation is

(3.2.2) Y1, = $983X, + $122X, + $43,082,

Where $983 is the partial regression coefficient By; , for X, and $122 is the partial regar;:l;lg;
Coefficient By, 1 for X,. The redundancy of information about ¥ carried by these t“lllos;ln iy
ISteflected in the fact that the partial regression coefficients ($983 and $ 122) s ez;; —$122
Magnitude than thejr separate zero-order Bs ($1,224 and $336). We may interpret }}1'2 ;dgtional
directly by Stating that, for any given time since Ph.D. (X;), on the average ea$c33 Sikintang
Publicatiop jg associated with an increase in salary of only $122 rather than ie interpreted as
_fOund When time since Ph.D. were ignored. The By, , = $983 may b? hrilar’y mtfl?average
'ndicating that, for faculty members with a given number of pubycatlons (X%,g%l; e
€ach additiong] year since Ph.D. is associated with an incre.ase in salary of fo gty
© $1224 that was found when number of publications was ignored. From a purely

i variables
Point of viey, thege changes are a consequence of the redundancy of the two causal

P



68 3. MRCWITH TWO OR MORE INDEPENDENT VARIABLES

(ie., the tendency for faculty who have had their Ph.D.s longer to have more Publicyy;
(ryy = .657); the partialing process controls for this tendency.’ Viewed through the la
causal analysis we see (particularly in the case of number of publications) how sen_ouselns of
can be misled about the causal impact of a variable when we fail to include in oy, nf ae
other important causes. This, then, is an instance in which we have failed to consider tp, :del
to isolate the effects of a presumably causal variable from other correlated potentig] cauzed
(Bollen, 1989). 2

Thus far, we have simply asserted that the regression equation for two or more IV takeg the
same form as did the single IV case without demonstrating how the coefficients are obtaipg
As in the case of presenting correlation and regression with one IV, we initially Staﬂdardizé
the variables to eliminate the effects of noncomparable raw (original) units. The regressioy
equation for standardized variables® is

(3.2.3) Zy = By1221 + Br2122

Just as ryy is the standardized regression coefficient for estimating zy from zy, By, , and
By, are the standardized partial regression coefficients for estimating zy from z; and z, with
minimum squared error.

The equations for By, , and By, ; can be proved via differential calculus to be

Brig= ry1 — T'rali2
B2
1-rh
(3.2.4)
By e Tyz —T'ri'12
21=
1-— r122

A separation of the elements of this formula may aid understanding: ry; and ry, are “valid-
ity” coefficients, that is, the zero-order (simple) correlations of the IVs with the dependent
variable. r%, represents the variance in each IV shared with the other IV and reflects their
redundancy. Thus, By, , and By, are partial coefficients because each has been adjusted 10
allow for the correlation between X; and X,.

To return to our academic example, the correlations between the variables are ry1 = 0,
ry, = .588, and ry, = .657. We determine by Eq. (3.2.4) that
710 — (.588)(.657)
Briz = 1= 6572 = .570,
_.588 — (.710)(.657)
By = 1= 657 = .213,
and that the full regression equation for the standardized variables is therefore
2y = .57021 + .213Z2.
5 ariabesC)
The terms holding constant or controlling for, partialing the effects of, or residualizing some other ¥ oot

indicate a mathematical procedure, of course, rather than an experimental one. Such terms are statislidans' e

for describing the average effect of a particular variable for any given values of the other variables- - and
6We employ the greek symbol B for the standardized coefficient in order to be consistent Wit the liter® rrofs of

}vifth the earlier edition. It should not be confused with the other use of this symbol to indicate TYP®

inference.

e



3.3 MEASURES OF ASSOCIATION WITH TWO INDEPENDENT VARIABLES 69

Once Byi2 and Byai have been determined, conversion to the original units is readily
accomplished by

sd

By, = el
y12 = Bri2 sd,
sd

By2i = Byai—
Sd2

(3.2.5)

Substituting the values for our running example (Table 3.2.1), we find

$7622
B =570 — ) =
Y12 7 ( 1 42> $983

$7622
B =B ——
Yl ( 13.35

Because we are again using the original units, we need a constant B, that serves to adjust
for differences in means. This is calculated in the same way as with a single I'V:

) = $122.

(3.2.6) By = My — By ;M; — By, |M,
= $53,046 — $983(7.67) — $122(19.93)
= $43,082.

The full (raw score) regression equation for estimating academic salary is therefore
¥, = $983X, + $122X, + $43,082,

and the resulting values are provided in the third column of Table 3.3.1 later in this chapter.

The partial regression coefficients, By;, = $983 and By, ; = $122, are the empirical esti-
mates, respectively, of 4 and g, the causal effects of our independent variables accompanying
the arrows in the causal diagram (Fig. 3.1.1).

3.3 MEASURES OF ASSOCIATION
WITH TWO INDEPENDENT VARIABLES

Just as there are partial regression coefficients for multiple regression equations (equations for
Predicting ¥ from more than one IV), so are there partial and multiple correlation coefficients
Fhat answer the same questions answered by the simple product moment correlation coefficient
!0 the single IV case. These questions include the following:

1. How well does this group of IVs together estimate ¥?

2. How much does any single variable add to the estimation of ¥’ already accomplished by
other variables?

3. Wl{en all other variables are held constant statistically, how much of ¥ does a given
Variable account for?

3.31 Multiple R and /2

Ju : . .
5 o r is the measure of association between two variables, so the multiple R is the measure
association between a dependent variable and an optimally weighted combination of two or
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more IVs. Similarly, r is the proportion of each \"ariable’szvaria.nce sh_ared with !;}16 other, angpe
is the proportion of the dependent variable’s variance (sdy) shared v'v1th the opum;',uy Weighteg
IVs. Unlike r, however, R takes on only values between 0 and 1, vy1th tl‘le former mdicating no
relationship with the IVs and the latter indicating a perfect relatlor?smp, (The reason thapy
are always positive becomes clear shortly.) The formula for the multiple correlation coefficient
for two IVs as a function of the original rs is

/rz + "%2 — 2ryiTyal1n
(3.3-1) Ry_12 = .0 1 i rfz .

A similarity between the structure of this formula and the formula for B coefficients may
lead the reader to suspect that R may be written as a function of these coefficients. This is
indeed the case; an alternative formula is

(3.3.2) Ry12 = vBrizry1 + Brai7ra-

For the example illustrated in Table 3.1.1 the multiple correlation is thus, by Eq. 3.3.0),

55 5047 + .3455 — 2(.710)(.588)(.657)
vz =y 1 — 4313 ’

= +/.5300 = .728

or by Eq. (3.3.2),

Ry.1, = +/.570(.710) + .213(.588),
= +/.5300 = .728.
o » of ouf
(We again remind the reader who checks the previous arithmetic and finds it “wrong ofg
warning in Section 1.2.2 about rounding errors.) . oles il
We saw in Chapter 2 that the absolute value of the correlation between two variables /i

by by
is equal to the correlation between Y and Yy. The multiple correlation is actually definabl
this property. Thus, with two IVs,

i Ry, = Typ,,»

and taking the example values in Table 3.3.1 we see that indeed yp, = 128 = R);'l;(iu

ryy,, and hence Ry ;, cannot be negative can be seen from the fact that by the I

criterion ¥ is as close as possible to Y. o
The reader will again recall that rZ, is the proportion of variance of ¥ shared ¥

oo 0f
. ] osite
exact parallel, R? , is the proportion of sd?% shared with the optimally weighted gomP

{of
. ; equa®
X, and X;. These optimal weights are, of course, those provided by the regressio”
used to estimate ¥, Thus,

2
(3.3.4) R2 . _ Sy
Y12 Sdlz,
55492 Py
TEIGR A T

e




<

3.3 MEASURES OF ASSOCIATION WITH TWO INDEPENDENT VARIABLES 71

TABLE 3.3.1
Actual, Estimated, and Residual Salaries
1 2 3 4 5 6 7
Y Yl Yl2 Y R Y12 X2.1 XZ = X2.l Y = Yl

$51,876 $47,332 $48,223  $3,653 10.68 7.32 $4,544
54,511 51,005 49,345 5,166 16.63 —13.63 3,506
53,425 47,332 46,275 7,150 10.68 —8.68 6,093
61,863 53,454 53,016 8,847 20.59 —3.59 8,409
52,926 54,678 53,268  —342 2258 —11.58 —1,752
47,034 51,005 49,710 -2,676 16.63 —10.63 -3,971
66,432 63,249 63,437 2,995 36.46 1.54 3,183
61,100 55,903 58,757 2,343 24.56 23.44 5,197

41,934 46,107 46,144 —4,210 8.70 .30 —4,173
47,454 49,781 50,676 —3,222 14.64 7.36 -2,327
49,832 49,781 51,651 -1,819 14.64 15.36 51

47,047 51,005 51,537 —4,490 16.63 4.37 —3,958
39,115 52,229 51,180 —12,065 18.61 —-8.61 —13,114

59,677 57,127 57,183 2,494 26.54 46 2,550
61,458 65,698 65,281 —3,823 4042 —-3.42 —4,240
M $53,046 $53,046 $53,046 $0 19.93 0 $0
sd $7,622 $5415 $5552  $5227 8.77 10.07 $5,365
Correlations

f ¥ X~ %,

Y 710=r,  728=Ry, .161=sr,

Y- ?1 0 = r(yll)] .051 .228 =pr

that is, some 53% of the variance in salary (Y) is linearly accounted for by number of years
since doctorate (X;) and number of publications (X,) in this sample. ‘

Again in parallel with simple correlation and regression the variance of the residual, ¥ — Y5,
is that portion of sdf, not linearly associated with X; and X,. Therefore (and necessarily),

(3.3.5) Tor—iy = 0,

and since such variances are additive,

3.3.6) sds = sd%,12 + sdf,_f,n.
It should also be apparent at this point that a multiple R can never be smaller than the
absolute value of the largest correlation of ¥ with the IVs and must be almost invariably 1arger.
of ;:IOPﬁmal.eStimation of ¥, under circumstances in which X, adds nothing to X, ’s estimation
.~ Would involve a 0 weight for X, and thus Ry.j, would equal |ry |, the absolute value of
v1- Any slight departure of X, values from this rare circumstance necessarily leads to some
perhaps‘m"’ial) increase in Ry 1, over |ry;|. ;
As YVlth bivariate correlation the square root of the proportion of Y variance not assocl-
ateld With the IVs is called the coefficient of (multiple) alienation. This value is V1-R =
™ 3300 = .686 for these data.
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3.3.2 Semipartial Correlation Coefficients and Increments to /2

One of the important problems that arises in MRC is that of defining the contributigy
each IV in the multiple correlation. We shall see that the solution to this Problery s Ilof
so straightforward as in the case of a single IV, the choice of coefficient depending oy tl?e[
substantive reasoning underlying the exact formulation of the research questions. Ope answer
is provided by the semipartial correlation coefficient sr and its square, sr2. To understang
the meaning of these coefficients, it is useful to consider the “ballantine” Recall that in the
diagrammatic representation of Fig. 2.6.1 the variance of each variable was Tepresented by 4
circle of unit area. The overlapping area of two circles represents their relationship as r2, Wiy,
Y and two IVs represented in this way, the total area of ¥ covered by the X; and X, circles
represents the proportion of ¥’s variance accounted for by the two IVs, Re33.
Figure 3.3.1 shows that this area is equal to the sum of areas designated a, b, and c. The
areas a and b represent those portions of Y overlapped uniquely by IVs X 1 and X, respectively,
whereas area c represents their simultaneous overlap with Y. The “unique” areas, expressed
as proportions of Y variance, are squared semipartial correlation coefficients, and each equals

the increase in the squared multiple correlation that occurs when the variable is added to the
other IV.” Thus

(3.3.7) a=sr} =R}, —r%,

B atatE e M
b =sry =Ry, — 3.

Y
X4 %
rZi=a+c
m=b+c

Rip=a+b+c
FIGURE 3.3.1 The ballantine for X, and X, with Y.

ubsc? Id;
"Throughout the remainder of the book, whenever possible without ambiguity, partial Cocmdenﬁ):{e all omereiﬂg
by the relevant independent variable only, it being understood that ¥ is the dependent variable a7 a8 o
have been partialed. In this expression (i) indicates that X; is not included in the variables X1 ' 7% the 5° i
partialed. Thus, sr; = ry ), ) 4, the correlation between Y and X, from which all other IVS
consideration have been partialed, Similarly, R without subscript refers :0 Ry.a2.k
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A formula for s7 for the two IV case may be given as a function of zero-order rs as

Ty — yol
sry = Y1 — 'ral12
)
1-r,
(3.3.8) and
Tyy — Iryp?
sry = r2 ~nhz

\/1_'122

For our running example (Table 3.2.1), these values are

710 — .588(.657)

Sry =
oG

sr} = .1850

= 430,

or, by Eq. (3.3.7)

sr? = 5305 — .3455 = .1850.

For Xz,
= .588 — .710(.657)
y =
1221657

sr? = 0258,

=.161

or, by Eq. (3.3.7),

sr2 = 5305 — .5047 = .0258.
is the correlation between all of ¥ and X; from which X,
because the effects of X, have been removed
ystem “removing the effect” is equivalent to
— X1, We

The semipartial correlation s7;
has been partialed. It is a semipartial correlation
from X, but not from Y. Recalling that in this s
subtracting from X; the X; values estimated from X5, that is, to be working with X;

see that another way to write this relationship is

(3.3.9) 51 =Ty, —%2)

Another notational form of sr; used is 'y 2), the 1.2 being a shorthand way of expressing

“X, from which X, has been partialed,” or X; —Xj ». Itisa convenience to use this dot notation
to identify which is being partialed from what, particularly in subscripts, and it is employed
whenever necessary to avoid ambiguity. Thus i - j means i from which j is partialed. Note
also that in the literature the term part correlation is sometimes used to denote semipartial
correlation. ‘

In Table 3.3.1 we present the X, — X, (residual) values for each case in the example in
which salary was estimated from publications and time since Ph.D. The correlation between
these residual values and Y is seen to equal .4301, which is s7y; and 43012 = .1850 = s,
as before.

To return to the ballantine (Fig. 3.3.1) we see that for our :
b=.0258,anda+b+c = R, = 5305.Itis tempting to calculate ¢ (byc=Riy —

2 g ; . . o

sr{ — sr2) and interpret it as the proportion of ¥ variance estimated jointly or reflundagﬂy
by X; and X,. However, any such interpretation runs into a serious catch—there is nothing
In the mathematics that prevents ¢ from being a negative value, and a negative proportion of

example, area a = .1850,



74 3. MRC WITH TWO OR MORE INDEPENDENT VARIABLES

variance hardly makes sense. Because c is not necessarily positive, we forgo interpretjng i

a proportion of variance. A discussion of the circumstances in which ¢ is negative ig fOUnd?[s,
Section 3.4. On the other hand, a and b can never be negative and are apPpropriately congidereg
proportions of variance; each represents the increase in the proportion of ¥ variance accounteg
for by the addition of the corresponding variable to the equation estimating Y.

3.3.3 Partial Correlation Coefficients

Another kind of solution to the problem of describing each IV’s participation in determining
R is given by the partial correlation coefficient pr;, and its square, pr12. The squared partia
correlation may be understood best as that proportion of sd not associated with X, that is
associated with X;. Returning to the ballantine (Fig. 3.3.1), we see that

= g R%ﬁlz = ’12/2
A e +e 1-r2,
(3.3.10)
b B2 — 72
pr% _ Ry~

= bte 1—r12,1

The a area or numerator for pr? is the squared semipartial correlation coefﬁc'lem i
however, the base includes not all the variance of ¥ as in sr? but only that portion of /
variance that is not associated with X,, that is, 1 — r2,. Thus, this squared partial 7 answers th:
question, How much of the ¥ variance that is not estimated by the other IVs in @e C‘l‘:‘a""“ ;
estimated by this variable? Interchanging X, and X, (and areas a and b), we similarly interp"
pr2. In our faculty salary example, we see that by Egs. (3.3.10)

5 3305 —.3455 _ 1850

5 L — 2826
PN =" 3455 %545

5305 ¢ ;
2 3055046 0259

1—-.4312 = 5688

: : illbe
Obviously, because the denominator cannot be greater than 1, partial correlations “;gtled
than semipartial correlations, except in the limiting case when other IVs are corte
Y, in which case sr = pr.

pr may be found more directly as a function of zero-order correlations by

Jarge!
owi

pry = 'y1 — Tyalpo
vl —r§2\/1 —rh
(3.3.11)
pry = Tya —Fyirpa )
1= rf,l,/l — rfz
For our example
g 710 — .588(.657) — 5316
V1 —3455/1 — 4312
and pr? = .5316% = 2826, as before;
.588 — .710(.657) — 2133

Y =
PR e soai = s
and prj = .2133? = .0455, again as before.
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In Table 3.3.1 we demonstrate that pr, is literally the correlation between X, from which
X, has been partialed (i.e., X — X,,) and Y from which X; has also been partialed (i.e.,
y - 7). Column 6 presents the partialed X, values, the residuals from X, ;. Column 7 presents
the residuals from Y3 (given in column 2). The simple correlation between the residuals in
columns 6 and 7 is 2133 = pr, (the computation is left to the reader, as an exercise). We
thus see that the partial correlation for X, is literally the correlation between Y and X,, each
similarly residualized from X;. A frequently employed form of notation to express the partial 7
i§ ryp1, Which conveys that X, is being partialed from both Y and X, (i.e., ry 1y2.1))» in contrast
to the semipartial r, which is represented as ry(.1)-

Before leaving Table 3.3.1, the other correlations at the bottom are worth noting. The r of
Y with ¥, of .710 is identically ry, and necessarily so, since 171 is a linear transformation of
X, and therefore must correlate exactly as X; does. Similarly, the 7 of ¥ with ¥;, of .728 is
identically Ry 1, and Pecessadly s, by definition in Eq. (3.3.3). Also, Y — )71 (thatis, Y - X;)
correlates zero with ¥;, because when a variable (here X,) is partialed from another (here Y),
the residual will correlate zero with any linear transformation of the partialed variables. Here,
Y, is a linear transformation of X; (i.e., f/l = B;X, + By).

Summarizing the results for the running example, we found sr? = .1850, pr; = .2826 and
Sr% = 0258, pr% — .0522. Whichever base we use, it is clear that npumber of publications
(X,) has virtually no unigue relationship to salary, that is, no relationship beyond what can
Pe ac'counted for by time since doctorate (X;). On the other hand, time since doctorate (X;)
is uniquely related to salary (sr;) and to salary holding publications constant (pry) to a quite
substantial degree. The reader is reminded that this example is fictitious, and any resemblance
to real academic departments, living or dead, is mostly coincidental.

3.4 PATTERNS OF ASSOCIATION BETWEEN ¥V
AND TWO INDEPENDENT VARIABLES

:msiotl\l:og-ra;p of the imp]'ication.s of all possible relationshipg among one depc?ndent van'gble

muléiple I;depenflent vmaples is fundament.al to unders?andm.g ar.ld interpreting the various

of each of partial coefficients encountered in MRC. This section 18 devoted to an exposition
ese patterns and its distinctive substantive interpretation in actual research.

3. .
4.1 Direct and Indirect Effects

As
Wez}:;v; stated, the regression coefficients By, , and By, estimate the causal effects of X
8inthe gj, in the causal model given in Fig. 3.4.1, Model A. These coefficients, labeled f and
effects are S;Z“:i are actually estimates of the direct effects of X; and X5, r?spectively. Direct
Variableg i thec y what the name implies—causal effects that are not mec%mted by any other
Such an jnterye, H.‘Odel- All causes, of course, are mediated by some intervening mech'am.sms. If
118 showp ag gmg variable is included, we have Model B shown in Fig. 3.4. 1. In this diagram
12150 hag ap ; Z‘flng a causal effect on X,. Both variables have direct effects on Y. However,
1otin the mag, ndirect effect on Y via X,. Note that the difference between Models A and B is
Caugga] Process €matics of the regression coefficients but in the understanding of the substantive

€ advant
f X, ang ;n l:ge of Model B, if it is valid, is that in addition to determining the direct effects
X, on X, Tfﬁsr; Y, one may estimate the indirect effects of X; onY as well as the effect of
X, on x atter (h) in Model B s, of course, estimated by the regression coefficient of

» I
I» lamely B,,. The direct effects, f and g, are the same in both Models A and B and

S
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Partial redundancy:

Model A Model B
X
X1 \ 1 f
C 4 4 l - Y
g
X2 g X2

Full redundancy:

Model C: Spurious relationships

i kit ol
h Y or hJ K
X2

Model D: Indirect effect
My e Ok sy,

FIGURE 3.4.1 Representation of relationships between ¥ and two IVs.

are estimated by the sample regression coefficients for X, and X, from the equation for I The
relationship between two exogenous variables, /# in Model A, is conventionally rePfeseme,d
by the correlation between the variables. The magnitude of the indirect effect of X; on 1
Model B may also be estimated by a method described in Chapter 11.

3.4.2 Partial Redundancy

We have included Models A and B under the rubric partial redundancy because this 1isObY
far the most common pattern of relationship in nonexperimental research in the behg)" an
sciences. It occurs whenever Tyr > Tyzryp and ry, > ry ry, [see Egs. (3.24), -(3'3'wi, )¢
(3.3.11)], once the variables have been oriented so as to produce positive correlations ©
The s7; and B, for each IV will be smaller than its ry (and will have the same sign) ;n atis
reflect the fact of redundancy. Each IV is at least partly carrying information abou’ ! 7oy
also being supplied by the other. This is the same model shown by the ballantine 12 Fig-
We consider another situation in which Iy, is negative in the next section.
Examples of Model A two-variable redundancy come easily to mind. It occurs
relates school achievement (¥) to parental income (X,) and education (X3), Of d; Sympiom
(Y) to IQ (X;) and school achievement (X3), or psychiatric prognosis (Y) to i exaIﬂP]eS
severity (X;) and functional impairment (X,), or—but the reader can supply many ufeff"ﬁs
of his or her own. Indeed, redundancy among explanatory variables is the plagu® e sOci‘d
to understand the causal structure that underlies observations in the behavior
sciences. it
Model B two-variable redundancy is also a very common phenomenon. SO™® :
examples are given in Fig, 3.4.2. Here we see that age is expected to produce

when 0%
/ ueﬂcy
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X; Age » Y Heterosexual interest

X, Physical maturity

X, Birth order ——————— Y Achievement

X, Parental aspirations

X; Sex » Y Career aspirations

/'

X; Interpersonal role preferences

X; Years since Ph.D. ——» Yy Salary

X, Publications

X; Tax cuts ——*———» Y Economic growth

+
X, Inflation

FIGURE 3.4.2 Examples of causal Model B.

.phySical maturity in a sample of school children and that each is expected to cause differences
In heterosexual interest. The presence of an arrow from age to heterosexual interest ?mplies
that physical maturity is not the only reason why heterosexual interest increases with age.
Birth order of offspring is expected to produce differences in parental aspirations and both
are causally related to achievement. We might expect sex differences in mterperso_nal. role
Preferences and that both of these variables will produce differences in career aspirations.
Also, for our running example, we expect the passage of time since Ph.D. to produce increases
In the number of publications and increases in both of these variables to produce Increases 1

Sa]ary

A Suppression in Regression Models
iﬂ €ach of the causal circumstances we have discussed, we expect the 4zrect effectsﬂgif :;:
anan'abl-es to be smaller than the zero-order (unpartialed) effects. In addition, ttvlve, a;ll m;—)u -
red:,ndlrea effect of our X, variables to take place via the X3 vanfub}:s;m.ng Oiltlgis ;)m e
on] ﬂdan(-:y is the most commonly observed pattern for causal Models = g i
Y possible model. Suppression is present when either ryy Of I'y2 18 less. ‘ an pd =
lhje other with r 12, OF when ry, is negative (assuming, as throughout, po[;mvct:h I;,le ;I(l) -Or,ger.
Coe S case the partialed coefficients of X; and X, will be larger 1f value than s

ficients and one of the partialed (direct effect) coefficients may become neg ;

arg
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The term suppression can be understood to indicate that the relationg
independent or causal variables is hiding or suppressing their real relationshj
would be larger or possibly of opposite sign were they not correlated. In the classic PSychom
ric literature on personnel selection, the term suppression was used to describe a Variable (Sllcl;
as verbal ability) X, that, although not correlated with the criterion ¥ (e.g,, job Performance)
is correlated with the available measure of the predictor X 1 (€.8., a paper and pencil test 0fjol;
skills) and thus adds irrelevant variance to it and reduces its relationship with Y. The inclusjop
of the suppressor in the regression equation removes (suppresses) the unwanted Variance j
X;, in effect, and enhances the relationship between X; and Y by means of By 5. This topics
discussed again in Chapter 12.

For a substantive example, suppose a researcher is interested in the roles of social assertiye.
ness and record-keeping skills in producing success as a salesperson. Measures of these tw,
characteristics are devised and administered to a sample of employees. The correlation between
the measure of social assertiveness (X;) and sales success (Y) is found to be +.403, the cor-
relation between record keeping (X,) and ¥ = +.127 and ri = —.305, indicating an overall
tendency for those high on social assertiveness to be relatively low on record keeping, although
each is a desirable trait for sales success. Because —.305 < (.403)(.127) we know that the
situation is one of suppression and we may expect the direct effects (the regression and associ-
ated standardized coefficients) to be larger than the zero-order effects. Indeed, the reader may
confirm that the B coefficients are .487 for social assertiveness and .275 for record keeping, !
both larger than their respective correlations with ¥ , 403 and .127. The coefficients may be
considered to reflect appropriately the causal effects, the zero-order effects being misleadingly |t
small because of the negative relationship between the variables. !

A Model B example of suppression may be found in the (overly simple) economic model !
shown in Fig. 3.4.2, in which tax cuts are expected to produce increases in economic growth |
but also inflation. Because inflation is expected to have negative effects on economic growth,
one can only hope that the direct positive effects of the tax cuts on economic growth will exceed
the indirect negative effect attributable to the effect on inflation.

Suppression is a plausible model for many homeostatic mechanisms, both biological and
social, in which force and counterforce tend to occur together and have counteractive effect
The fact that suppression is rarely identified in simple models may be due to the difﬁcultyn:
finding appropriate time points for measuring X;, X,, and Y. Suppression effects of'm"d"ts0
magnitude are more common in complex models. Material suppression effects are likely
be found in analyses of aggregate data, when the variables are sums or averages of malll‘);
observations and R2s are likely to approach 1 because of the small error variance that &S

. ... 1 iti ns
in these conditions. Tzelgov and Henik (1991) provide an extensive discussion of conditi
under which suppression occurs.

hip betWeen the
pS Wlth Y 5 whiCh

— o e

ey

- e e
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3.4.4 Spurious Effects and Entirely Indirect Effects

. is Of
Model C in Fig. 3.4.1 describes the special case in which ry, = ry ry. TS 'mo(:)e; }l(« is
considerable interest because it means that the information with regard to Y carried D 0 f$
completely redundant with that carried by X;. This occurs whenever the B, sr, andpr ¢ er
for X, are approximately zero. This occurs when their numerators are approximafely zt 2 calse
when ry; & ri,ry,). For the causal model the appropriate conclusion is that X3 15 L il
of Y at all but merely associated (correlated) with ¥ because of its association W' otwee
some fields such as epidemiology, X, is referred to as a confounder of the relationshiP on fro®
X, and Y. (But note the appropriate considerations before drawing such a conclus!™ ely 10

is
sample results, as discussed in Section 3.7.) A great many analyses are carried out pre
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determine this issue—whether some variable has a demonstrable effect on ¥ when correlated
variables are held constant or, alternatively, whether the variable’s relationship to Y is (or may
be) spurious. Thus, for example, a number of investigations have been carried out to determine
whether there is a family size (X,) influence on intelligence (Y) independent of parental social
class (X;), whether maternal nutrition (X,) has an effect on infant behavior (Y) independent
of maternal substance use (X, ), whether the status of women (X;) in various countries has an
effect on fertility rate (Y) independent of economic development (X;), or indeed whether any
of the X, effects on Y shown in Fig. 3.4.2 are nil. Generally, the question to be answered is the
“nothing but” challenge. Is the relationship between Y and X, nothing but a manifestation of
the causal effects of X; ?

Complete redundancy, however, does not always imply a spurious relationship. InFig. 3.4.1,
Model D we see a situation in which the partial coefficients for X; approach zero, indicating
correctly that there is no direct effect of X; on Y. There is, however, an indirect effect that,
according to the model, takes place entirely via X,; that is, the effect of X; is mediated by X,.

Many investigations are designed to answer questions about intervening mechanisms—for
example, is the higher female (X;) prevalence of depression (Y) entirely attributable to lower
female income/opportunity structure (X;)? Are ethnic (X;) differences in achievement (Y)
entirely due to economic deprivation (X,)? Is the demonstrable effect of poor parent marital
relationship (X;) on delinquency (Y) entirely attributable to poor parent-child relationships
(X,)? In these cases the relationships between X; and Y cannot be said to be spurious but are
nevertheless likely to have different theoretical implications and policy import when they are
entirely redundant than when they are not.

As in the case of the comparison of Models A and B, the difference between Models C and
D lie not in the coefficients but in one’s understanding of the causal processes that gave rise
to the coefficients. Again, one can only demonstrate consistency of sample data with a model

rather than prove the model’s correctness.

3.5 MULTIPLE REGRESSION/CORRELATION
WITH k INDEPENDENT VARIABLES

3.5.1 Introduction: Components of the Prediction Equation

interpretations of multiple and

When more than two IVs are related to Y, the computation and
The goal is again to produce

partial coefficients proceed by direct extension of the two-IV case.
a regression equation for the k IVs of the (raw score) form

(35.1) ¥ =By i X1 +Brass.iXo +Branz aXs + .o By 123.. k-1 %k + Broazs..ks

or, expressed in simpler subscript notation,
i’ =B1Xl +B2X2 +B3X3 + +Bk +BQ,
d in terms of the original Y plus the errors

or, as in the simple two variable equation, €Xpresse

of prediction e:
Y=BIX1 +BzX2 +B3X3 + ... +Bka +B0 +e.

When this equation is applied to the data, it yields a set of ¥ values (one for 'eacg of
the n cases) for which the sum of the (Y — Y)? values over all n ca§es will (aga'm) e a
minimum. Obtaining these raw-score partial regression weights, the B;, involves solvmtf1 a se}:
of k simultaneous equations in £ unknowns, a task best left to a computer program, althoug
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Appendix 2 provides the method of hand calculation for MRC.) The purpose of the

section is to lay down a foundation for understanding the various types of coefficients rpresem
by MRC for the general case of k independent variables, and their relationship to Vaﬁgu(;duced
strategies appropriate to the investigator’s research goals. MRe

3.5.2 Partial Regression Coefficients

By direct extension of the one- and two-IV cases, the raw score partial regression coefficiens
B; (=By.123..4) is the constant weight by which each value of the variable X, is to p,
multiplied in the multiple regression equation that includes all k£ IVs. Thus, B; is the average or
expected change in Y for each unit increase in X; when the value of each of the £ — 1 other IV
held constant. B; is the partial regression coefficient when all variables have been standardizeg
Such standardized coefficients are of interpretive interest when the analysis concerns test scoreg
or indices whose scaling is arbitrary, or when the magnitudes of effects of variables in different
units are to be compared.
@ For example, let us return to the study in which we seek to account for differences in salary
in a university department by means of characteristics of the faculty members. The two IVs
CHO3EX02 yqed thus far were the number of years since each faculty member had received a doctoral
degree (X;) and the number of publications (X;). We now wish to consider two additional
independent variables, the gender of the professor and the number of citations of his or her
work in the scientific literature. These data are presented in Table 3.5.1, where sex (X;) is coded
(scored) 1 for female and 0 for male, and the sample size has been increased to 62 as a more
reasonable size for analysis. The correlation matrix shows that sex is negatively correlated with
salary (ry; = —.210), women having lower salaries on the average than men. The number of
citations (X,) is positively associated with salary (rys = .550), as well as with the other IVs.
Sex correlates very little with the other IVs, except for a tendency in these data for women to
be more recent Ph.D.s than men (r;; = —.201).

The (raw-score) multiple regression equation for estimating academic salary from these four
IVs may be obtained from computer output or by the matrix inversion method of Appendix 2
(where this problem is used illustratively). It is Y= $857X; (time) + $92.8 (publicationS) 7
$918X,; (female) 4 $202X, (citations) + $39,587. These partial B; coefficients indicate that for
any given values of the other IVs, an increase of one in the number of citations is associate
with a salary increase of $202 (= B,); an increase of one unit in X, and hence the averé®
difference in salary (holding constant the other IVs) is —$918 (favoring men); and the effectcsl
of an additional year since degree (X;) and an increase of one publication (X,) are $857 a; 5
$93, respectively. Note also that By = $39,587 is the estimated salary of a hypOthetlcal 5
professor fresh from his doctorate with no publications or citations, that is, all X;

In this problem, the salary estimated by the four IVs for the first facul
(Table 3.5.1) is

ty member

Y = $857(3) + $92.8(18) — $918(1) 4 $202(50) + $39,587
= $2,571 + $1,670 — $918 + $10,100 + $39,587
= $53,007.8

The remaining estimated values are given in the last column of Table 3.5.1.

8Within rounding error.




_ TABLE 3.5.1
lllustrative Data With Four Independent Variables

Time since Ph.D.  No. of publications Sex No. of citations  Salary

LD X1) X2) (X3) (X4) 09) Estimated Salary
01 3 18 1 50 $51,876 $53,007
02 6 3 1 26 54,511 49,340
03 3 2 1 50 53,425 51,523
04 8 i 0 34 61,863 54,886
05 9 11 1 41 52,926 55,682
06 6 6 0 37 47,034 52,757
07 16 38 0 48 66,432 66,517
08 10 48 0 56 61,100 63,917
09 2 9 0 19 41,934 45,973
10 5 22 0 29 47,454 51,769
11 5 30 1 28 49,832 51,391
12 6 21 0 31 47,047 52,937
13 7 10 1 25 39,115 50,644
14 11 27 0 40 59,677 59,596
15 18 37 0 61 61,458 70,763
16 6 8 0 32 54,528 51,933
17 9 13 1 36 60,327 54,858
18 7 6 0 69 56,600 60,076
19 7 12 1 47 52,542 55,272
20 3 29 1 29 50,455 49,786
21 7 29 1 35 51,647 54,426
22 5 7 0 35 62,895 51,589
23 7 6 0 18 53,740 49,778
2% 13 69 0 90 75,822 75,302
25 5 11 0 60 56,596 57,008
26 8 9 1 30 55,682 52,418
27 8 20 1 27 62,091 52,833
28 7 41 1 35 42,162 55,539
29 2 3 1 14 52,646 43,489
30 13 27 0 56 74,199 64,541
31 5 14 0 50 50,729 55,267
33 ” ] 0 35 37,939 47,605
34 3 7 0 1 39,652 43,010
35 9 19 0 69 68,987 62,996
36 3 11 0 69 55,579 57,112
37 9 o 0 27 54,671 55,633
38 3 9 g 20 o o
s et 12 L e e
:(1) “1) ;2 g 45 47,082 51,943
009 61,032
42 11 12 0 54 6% 8
47 58,632 54,19
o : 2 g 29 38,340 46,857
1 6 0 71,219 75,135
5 o 89 5 . 53,712 55,643
. 7 16 A p 54,782 52,751
- 5 12 - e 83,503 69,043

48 16 50 0 59 ’

81
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TABLE 3.5.1 (continued)

Time since Ph.D. No. of publications Sex No. of citations Salary\

LD. X,) (0.69) (X3) Xs) @) Estimateq Salary
49 5 18 0 33 47,212 52,206
50 4 16 1 28 52,840 49236
51 5 5 0 42 53,650 52817
52 11 20 0 24 50,931 55,716
53 16 50 1 31 66,784 63,279
54 3 6 1 27 49,751 47249
55 4 19 1 83 74,343 60,620
56 4 11 1 49 57,710 53,012
57 5 13 0 14 52,676 47,905
58 6 3 1 36 41,195 51,359
59 4 8 1 34 45,662 49,705
60 8 11 1 70 47,606 60,681
61 3 25 1 27 44,301 49,011
62 4 4 1 28 58,582 48,123
M 6.79 18.18 .56 40.23 $54,816 $54,816
sd 428 14.00 50 17.17 $9,706 $6,840
Correlation Matrix
Time since Ph.D. No. of publications  Sex  No. of citations  Salary
X1 (X2) (X3) (X4) @)
Time since Ph.D. 1.000 651 —.210 373 608
No. of publications 651 1.000 —.159 333 506
3 Sex -.210 —-.159 1.000 —.149 -.201
s No. of citations 373 333 —.149 1.000 550
o Salary .608 .506 —.201 .550 1.000

Standardized Parfia/ Regression Coefficients

The regression equation may be written in terms of standardized variables and §
coefficients as

Zy = 3782y + 134z, — 04723 + 357z,
The B values may always be found from B values by inverting Eq. (3.2.5):

(3.5.2) B g Rdr i
sdy

: s e
for example, B, = .202(17.17/9706) = .357. As always, with standardized Y and IV
intercept B, is necessarily zero, and thus may be omitted.

3.5.3 R, R? and Shrunken R?2

Multiple R and R?

o The
A " o ues:
Application of the regression equation to the IVs yields a set of estimated ¥ ".'al ample

simple product moment correlation of Y with ¥ equals the multiple correlation; in this €
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ry=R= 709. As with the one- or two-IV case, R? is the proportion of Y variance accounted
f;r and R? = sdf., /sd% = (6885)%/(9706)* = .5032.
R? may also be written as a function of the original correlations with ¥ and the B coefficients

by extension of Eq. (3:3.2):

(3.5.3) Ry 12k = Z Birw,

where the summation is over the k IVs. Thus in the current example,
R}_lm = .378(.608) + .134(.506) — .047(.201) + .357(.550) = .5032,

as before.
Lest the reader think that this represents a way of apportioning the Y variance accounted

for among the TV (that is, that X;’s proportion is its B;ry), it is important to recall that B; and
ry; may be of opposite sign (under conditions of suppression). Thus, the suppressor variable
on this interpretation would appear to account for a negative proportion of the Y variance,
clearly a conceptual impossibility. The fact that B,y is not necessarily positive is sufficient to
preclude the use of Eq. (3.5.3) as a variance partitioning procedure.

R? may also be obtained as a function of the f coefficients and the associations between the
IVsas

(3.5.4) = Z (ﬁ,?) +2 Z BiB;7i)

where the first summation is over the k IVs, and the second over the k(k — 1)/2 distinct pairs
of IVs. In the current problem,

RE )y, = 3782 + .134% + 0477 + 3577 + 2[(:378)(.134)(.651)
+ (:378)(.047)(:210) + (:378)(.357)(.373) + (.134)(.047)(.159)
+ (.134)(.357)(.333) + (.047)(.357)(.150)] = .5032

This formula appears to partition R? into portions accounted for by each variable uniquely
and portions accounted for jointly by pairs of variables, and some authors so treat it. However,
we again note that any of the k(k — 1)/2 terms B,B;r; may be negative. Therefore, neither
Eq. (3.5.4) nor Eq. (3.5.3) can serve as variance partitioning schemes. This equation does,
however, make clear what happens when all correlations between pairs of IVs equal 0. The
triple-product terms will all contain r;; = 0 and hence drop out, and R? = Tp? = Tr}, as was
seen for the two-IV case (Section 3.4.2).

Shrunken or Adjusted R?: Estimating the Population p*

The R? that we obtain from a given sample is not an unbiased estimate of the population
Squared multiple correlation, p2. To gain an intuitive understanding of part of the reason for this,
Magme the case in which one or more of the IVs account for no ¥ variance in the population,
that is, r % =O'in the population for one or more X;. Because of random sampling fluctuations
w.e Wwould expect that only very rarely would its 2 with Y in a sample be exactly zero; it will
virtually always have some positive value. (Note that although r can be negative, neither r?
“‘2” R? can be.). Thus, in most samples it would make some (possibly trivial) contribution to

- The smaller the sample size, the larger these positive variations from zero will be, on the
average, and thus the greater the inflation of the sample R?. Similarly, the more IVs we have,
ie more opportunity for the sample R? to be larger than the true population p?. It is often

Sirable to have an estimate of the population p? and we naturally prefer one that is more
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accurate than the positively biased sample R2. Such a realistic estimate of the Populatioy 2
(for the fixed model) is given by 2

52 _ 1 _(1— 2__'1_—1_
(3.5.5) B=1-0-R)—r—7

This estimate is necessarily (and appropriately) smaller than the sample R? and is thug often
referred to as the “shrunken” R2. The magnitude of the “shrinkage” will be larger for smy
values of R? than for larger values, other things being equal. Shrinkage will also be larger
the ratio of the number of IVs to the number of subjects increases. As an example, consider
the shrinkage in R? when n = 200 and cases where k =5, 10, and 20 IVs, thus yielding k/n
ratios of 1/40, 1/20, and 1/10, respectively. When R? = .20, the shrunken values will equal,
respectively, .1794, .1577, and .1106, the last being a shrinkage of almost one-half. When
R? = .40, the comparable values are, respectively, .3845, .3683, and .3330, smaller shrinkage
either as differences from or proportions of R?. For large ratios of k/n and small R?, these
shrunken values may be negative; for example, for R? = .10, k = 11, n = 100, Eq. (3.63)
gives —.0125. In such cases, by convention, the shrunken R? is reported as zero.

It should be clear from this discussion that whenever a subset of IVs has been selected post
hoc from a larger set of potential variables on the basis of their relationships with Y, not ouly
R2, but even the shrunken R? computed by taking as k the number of Vs selected, will be
too large. This is true whether the computer capitalizes on chance by performing a stepwise
regression, or the experimenter does so by selecting IVs with relatively larger rys. A moe
realistic estimate of shrinkage is obtained by substituting for k in Eq. (3.6.3) the total numbet
of IVs from which the selection was made.

3.5.4 sr and sr?

The semipartial correlation coefficient sr and its square sr? in the general case of k IVs 1%
q g

be interpreted by direct extension of the two IV case. Thus sr? equals that proportion of e

1

variance accounted for by X; beyond that accounted for by the other k — 1 IVs, and

(3.5.6) srt =Ry in— R} 1oy
; ared
(the parenthetical i signifying its omission from the second R?), or the increase 1 thels“}: put
multiple correlations when X; is included over the R? that includes the other X~ of 10
excludes X;. This may be thought of as the unique contribution of X; to R? inthe c(_;ntcbe eel
remaining k — 1 IVs. As in the two-IV case, the semipartial r equals the correlation
that portion of X; that is uncorrelated with the remaining IVs and Y:
(3.5.7) STy = Ty(i12...09)..k)
= ry@-2,12..0)..0° e
:on 0
As might be expected, sr; may also be written as a function of the multiple COHelano
other I'Vs with X,
(3.5.8) sri=PBi /1 =R 15 ).k
bow evefv
Neither sr; nor sr? is provided as default output by most MRC computer pr ogra®’® gler® ¢

Jeranc®

the term 1 — R?, ;. is often provided. This term, called the variable’s 10
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analyst to the level of redundancy of this variable with other predictors.® Occasionally sr?

data : . .
values are provided, poss1bly labeled as the “unique” contribution to R2. When pr; is available,
srtis readily determined by
2
3 Pl
(3.5.9) i 5 o2 (=R} 153 0)-
355 pr and pr?

The partial correlation coefficient pr;, we recall from the two-IV case, is the correlation between
that portion of ¥ that is independent of the remaining variables, ¥ — Y}, ¢« and that portion

of X, that is independent of the (same) remaining variables, X; — }2',-,12".(0.“,(, that is,

(3.5.10) PTi = Tyi.12...00)..k
= P2 0. &K1z 00"

pr? is thus interpretable as the proportion of that part of the ¥ variance that is independent of
the remaining IVs (i.e., of 1 — R§.12...(D.,.k) accounted for uniquely by X;:

2

St;
(3.5.11) pri=——t —
1< R%’.lZ...(i)...k

It can be seen that pr? will virtually always be larger than and can never be smaller than sr2,
because sr? is the unique contribution of X; expressed as a proportion of the rotal Y variance
whereas pr? expresses the same unique contribution of X; as a proportion of that part of the Y
variance not accounted for by the other IVs. -

3.5.6 Example of Interpretation of Partial Coefficients

Table 3.5.2 presents the semipartial and partial correlations and their squares for the salary
example. We see that publications (X,) accounts for 26% (r 2) of the salary variance, it accounts
uniquely for only 1% of the salary variance (sr3 = .01), and only 2% of the salary variance not
accounted for by the other three variables (pr? = .02). Notice that in this exalpple the partial
coefficients of the four IVs are ordered differently from the zero-order correlations. Although

time since Ph.D. taken by itself accounts for .37 (ry) of the variance in salary, it uniquely

TABLE 3.5.2 :
Correlations of Predictors With Y
2
Predictor v ORI i el L

X,, Time since Ph.D. 608 370 278 077 367 135

%, Mo, of publicationsg e, 506,236, 101, 010 3,143 '3(2)2
X, Sex _201 .040 —.046 .002 —-.065 -

X,, No. of citations 550 302 328 107 422 178

\

9 i ;
Chapter 19 deals with this and other indices of IV intercorrelation in more detail.
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accounts for only 8% of this variance, whereas citations, which alone accounts for 30
salary variance, accounts uniquely for 11%. The reason for this is the much greater red% Of the
of time since Ph.D. with other predictors (46%) as compared with citations (169, (l;nda“
section). e

3.6 STATISTICAL INFERENCE WITH £
INDEPENDENT VARIABLES

3.6.1 Standard Errors and Confidence Intervals for B and g

In Section 2.8.2 of Chapter 2 we showed how to determine standard errors and confidence
intervals for r and B in the two-variable case, provided that certain distributional assumptiong
are made. Similarly, one may determine standard errors for partial regression coefficients; thyt
is, one may estimate the sampling variability of partial coefficients from one random sample
to another, using the data from the single sample at hand. : .
The equation for estimating the standard error of B is particularly enlightening because it
shows very clearly what conditions lead to large expected sampling variation in the size of B
and hence in the accuracy one can attribute to any given sample B value. A convenient fo
of the equation for the standard error of B for any X; is :

: de 1 1—R2
3.6.1 SEp = —- X
ol BT S V1R \n—k—1

where R} is literally R% ,, ,, and R? is literally R}y, o).k The ratio of the sds, as always,
simply adjusts for the scaling of the units in which X; and Y are measured. Aside from this, W
see from the third term that the size of the SE will decrease as the error variance proportion
(1 —R%) decreases and its df (= n—k— 1) increase. (On reflection, this should be obvious.) Note
that this term will be constant for all variables in a given regression equation. The second ferm
reveals an especially important characteristic of SEp, namely, that it increases as a function
of the squared multiple correlation of the remaining IVs with X, R?. Here we encounter a
manifestation of the general problem of multicollinearity, that is, of substantial correlauoli
among IVs. Under conditions of multicollinearity there will be relatively large values for ae
least some of the SEgs, so that any given sample may yield relatively poor estimates of som
of the population regression coefficients, that is, of those whose R?s are large. (See Chapter
for further discussion of this issue.)

In order to show the relationship given in Eq. (3.6.1) more clearly it is useful‘ to
with variables in standard score form. B; expressed as a function of standard scores 15 i
standard error of B; drops the first term from (3.6.1) because it equals unity, SO that

IR o w1
i

work

. aini?

To illustrate the effects of differences in the relationships of a given X;, with the refrsnex e
IVs, we return to our running example presented in Tables 3.5.1 and 3.5.2. o orte ation®
‘e

ple, number of publications and number of citations had very similar zero-order C y
with salary, .506 and .550, respectively. Their correlations with other IVs, cSpemu ber of
since Ph.D. differed substantially, however, with publications correlating .651 and 1 is 4330
citations correlating .373 with time. The squared multiple correlation with other IVS

i
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for number Of publications and .1581 for number of citations. Substituting these values into

Eq. (3.6.2) we find

sE, =\/1—.5032\/ 1
'Publications 57 l —; .4330

.0934(1.3280) = .124,

SE,,_ =‘/1—.5032‘/ 1
Citarions 57 1 .1581

.0934(1.0899) = .102.

Thus we can see that the redundancy with other variables has not only reduced the B for
— .506) as compared to citations (to .357 from

publications (to .134 from ry pusiications
Iy Citations = +990), it also has made it a less reliable estimate of the population value. In

contrast, the B for sex, although smaller in size than that for citations, .047 versus .357, has a
slightly smaller SE, .096 versus .102. Sex shared 5% of its variance with the other IVs, whereas

citations shared 16% of its variance with the other IVs.
Converting from these back to the SE we find

SEppubiicarions = 9706/14.0(.124) = 85.9
SEpciations = 9706/1717(102) =575

In Section 2.8.2 of Chapter 2, we showed how to compute and interpret confidence inter-
proceed in the same way,

vals in simple bivariate correlation and regression. For MRC, we

using our faculty salary example. For the regression coefficients, the B;, we found the stan-

dard errors for publications and citations to be, respectively, 85.9 and 57.5. The margin of

error (me) for B; is t,(SEp;), where 2, is the multiplier for a given confidence interval for
are reported in the literature. How-

the error df. Most frequently 95% confidence intervals ;
ever, 80% CI may provide a more realistic feeling for the likely population value in some

cases,

,See the regression equation in Section 3.5.2 for the B values (93 and 202) in what follows.
Using the approximate critical value of ¢ for & = .20, #, = 1.3 as the multiplier, the 80%
me for publications = 1.3(85.9) = 112, so the 80% CI = 93 & 112, from —19 to 205. For
Clt{ltlons, the 80% me = 1.3(57.5) = 74.6, so the 80% CI = 202 + 74.6, from 127 to 277.
‘éi‘.“g {, = 2 as the multiplier, the 95% me for B for publications is 2(85.9) = 172, so the 95%
893172 = 79 10 265. For citations, the 95% me i 2(57.5) = 115 and the 95% CI for

Or citations is 202 + 115, = 87 to 317.
of e may use the SE to determine the bounds within which we can assert with a chosen level

Conﬁ-dence that the population B falls much as we did in Chapter 2 forits zero-order analog, -
Us;ere, In Section 2.8.2, we initially used the exact ¢ values for the available degrees of freedom.
for l;g that method, for the 95% confidence interval, the margin of err.or, meg = 1(SEp), where,

f ~n—k- 1 —6r—4—1= 57t = 2002 (Appendix Table A). The me for
:an' e (SEj;). The standard errors for publications and citations are, respf:cuvely, 124
f .10?:, and the margins of error are .248 and 204, so the 95% conﬁdegce interval for B
T Publications is .134 + 248, from —.11 to .38, and the 95% confidence interval for B for

Cltations js 357 4 -204, from .15 to .56.



88 3. MRCWITH TWO OR MORE INDEPENDENT VARIABLES

3.6.2 Confidence Intervals for A?

The CIs that follow for R? and differences between independent R%s are from Ol -

(1995). They are based on large-sample theory and will yield adequate approximat 0ns‘;‘n

df > 60. or
We have found that for our sample of 62 faculty members, our four IVs yield an g2

: A of 5037
The variance error of R? is given by :

4R%(1 — R2*(n—k —1)?
n2—-1)®m+3)

(3.6.3) SE2, =

Substituting,
4(.5032)(.4968%) (57%)

(622 — 1) (65)

Therefore the standard error, SEg. = +/.00646 = .080.

95% confidence intervals using exact ¢ values are routinely reported in the literature. Alter.
natively, one may opt to use some other probability, such as 80%, as providing reasonable
bounds for the purposes of the study. In recognition of the fairly rough approximation pro-
vided by any of these limits, one may use the approximate constant multipliers (z,) of the SEs
for the desired degree of inclusion of Section 2.8.2:

Cl 9% 95% 80% 2/3
t 26 2 1371

The 80% me for R* = 1.3(.0804) = .1045, so the approximate 80% CI is .503 £ .104,
from .40 to .61. (The 95% me = 2(.0804) = .161, so the approximate 95% CI for R is
.503 £ .161, from .34 to .66.)

551232 = = .006461.

3.6.3 Confidence Intervals for Differences
Between Independent A?s

For our running example of 62 cases (University V), we found the R? = .5032 for the k = 41Vs
For the same IVs in University W, where n = 143, assume that R, = .2108. The dlfferenge
is .5032 — .2108 = .2924. Since these are different groups that were independently sampled:
we can find CIs and perform null hypothesis significance tests on this difference, usiog theum
of the difference. As we have seen for other statistics, this is simply the square root of .the San
of the SE?s of the two R%s. We found the SE? for V to be .006461 in the previous sectio®:
assume we find the SE for W to be .003350. Substituting,

(3.6.4) SER%,—R@, = /SER%, +SER%,,

= +/.006461 + .003350 = +/.006811 = .0825.

: thesis
The approximate 95% me = 2(.0825) = .1650, so the approximate 95% CI for ’_”l hyp: 0, the
significance test = .2924 + .1650, from .13 to .46. Since the 95% CI does not incl
difference between the universities’ R2s is significant at the o = .05 level.

3.6.4 Statistical Tests on Multiple and Partial Coefficients

jo?
L . egrcs®
In Chapter 2 we presented statistical inference methods for the statistics of simPI¢ ;ngr ete!
and correlation analysis, that is, when only two variables are involved. As we have S

d
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of the null hypothesis that R? is zero in the population can be accomplished by examination of
the lower confidence limit for the desired alphalevel (e.g., the 95% two-tailed CI). Equivalently,
the statistic F may be determined as

_Rn-k-1)
(3.6.5) F__H?F%_

withdf =kandn—k — 1.

F may also be computed (or provided as computer output) as a function of raw scores in the
classic analysis of variance format. As we saw in the one-IV case, the total sample variance
of Y may be divided into a portion accounted for by the IV, which is equal to the variance of
the estimated ¥ values, sd2, and a portion not associated with the IV, the “residual” or “error”
variance, sdz_.. Similarly, the sum of the squared deviations about the mean of ¥ may be
divided into a sum of squares (SS) due to the regression on the set of IVs, and a residual sum
of squares. When these two portions of the total are divided by their respective df, we have the
mean square (MS) values necessary for determining the F values, thus

regression SS  R2Y y*

k o e
residual SS (1 — RY)Y . y?
n—-k—1  n—k-—-1"

regression MS =
(3.6.6)

residual or error MS =

When F is expressed as the ratio of these two mean squares, we obtain

(3.6.7) F= regression MS R Yy /k
T residual MS 5 a- RZ) (Zyz) I — = 1).

Canceling the Y~y term from the numerator and denominator and simplifying, we obtain

Eq. (3.6.5).
Let us return to our running example of academic salaries. The four independént variables
Produced R? = .5032. Because there were 62 faculty members, by Eq. (3.6.5),

" 5082 (62~4=1)

= 14.43
(1-.5032)4

fordf = 4,57, |
int;m‘;m_g to the tabled F values for oo = .01 (Appendix Table D.Z?, we find an F value (by
Valurg ation) of 3.67 is necessary for significance. Because the obtained F' value e_xceed§ this
obe ,ZZVe conclude that the linear relationship between these four IVs and salary is not likely
A Kol the population.
nescgre"louﬂy noted, sr;, pr,, and B; differ only with regard to their denominators. T.hus
es arn: tCQual zero unless the others are also zero, so it is not surprising that they must yield
clear thag l.-)value for t.he statistical significance of their departure fror.n zero. I‘t should also be
Zero o} Chcause B; is the product of B and the ratio of standard deviations, .1t also can equal
Signify Ca);]:' en the standardized coefficients do. Thus, a single equation provxd.es a test for the
Tot, a]] g e'of departures of all the partial coefficients of X; from zero. They either are, or are
Ignificantly different from zero, and to exactly the same degree.

no

(3.6_8) —k—1

AT Ty TroEe

fiwilp carry th : : .
€ same sign as sr, and all the other partial coefficients for that variable.
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For example, let us return to the running example where the obtained R? of 5037w
to be significant for k = 4 and n = 62. The sr;s for the four IVs were, rCSPeCtiVely 2.?8 fo d
—.046, and .328. -8, 10y,

Determining their ¢ values we find

trime = 278 %% e
tPublications = -101 %—;'ngl —1.08 4
Isex = —.046 6_12__:‘5"0%21 PR
ECitations = 328 %:0—"321 =351,

Looking these values up in the ¢ table (Appendix Table A) for 57 df, we find that time
since Ph.D. and number of citations are significant at the .01 level but publications and sex
are not significant at the .05 level. We conclude that time and citations both make unique
(direct) contributions to estimating salary. We may not reject the nil hypothesis that sex and
publications have no unique (direct) relationship to salary in the population once the effects of
time and citations are taken into account.

It is quite possible to find examples where R? is statistically significant but none of the tests
of significance on the individual IVs reaches the significance criterion for rejecting the nil |
hypothesis. This finding occurs when the variables that correlate with Y are so substantially
redundant (intercorrelated) that none of the unique effects (Bs) is large enough to meet the
statistical criterion (see Chapter 10 for a more extensive discussion of this problem). On the
other hand, it may also happen that one or more of the  tests on individual variables does
reach the criterion for significance although the overall R? is not significant. The variance
estimate for the regression based on k IVs is divided by k to form the numerator of the F
test for R?, making of it an average contribution per IV. Therefore, if most variables do not
account for more than a trivial amount of ¥ variance they may lower this average (the mean
square for the regression) to the point of making the overall F not significant in spite of the
apparent significance of the separate contributions of one or more individual IVs. In Suc_h
circumstances, we recommend that such IVs not be accepted as significant. The reason for ﬂll:s
is to avoid spuriously significant results, the probability of whose occurrence is controllcdez
the requirement that the F for a set of IV's be significant before its constituent IVs are ! te::iin
This, the “protected ¢ test,” is part of the strategy for statistical inference that is consider
detail in Chapter 5.

3.7 STATISTICAL PRECISION AND POWER ANALYSIS

3.7.1 Introduction: Research Goals and the Null Hypothesis

aﬁOﬂﬂ
Almost every research effort is an attempt to estimate some parameter in some go I::llxljltiple
In the analyses described in this book, the parameters in question are represented : );1 ces b8
and partial regression and correlation coefficients. Traditionally the behavioral S.CIe egressioﬂ
focused almost entirely on the issue of the simple presence and direction of a part! 4 r-ab]e and
coefficient, or the confidence that there is some correlation between a dependent VA " oy

a set of independent variables in the population. Thus the statistical tests have 860
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focused on the null (nil) hypothesis that the population coefficient is zero. Although this is
sometimes a useful question and thus an appropriate research goal, its limitations in advancing
the progress of science have been recognized in articles as well as in an organized effort to
change the focus of research reports (Wilkinson & the APA Task Force on Statistical Inference,
1999).

The precision of any statistic is identified by its standard error and the associated confidence
interval. Itsstatistical power is the probability of rejecting the null hypothesis when it is false.
Both are determined as a function of three elements, the size of the effect in the population, the
df which are determined primarily by the sample size, and the chosen margin of error or alpha
level. Thus, it is appropriate to view statistical power as a special case of the more general
issue of the precision of our estimates.

In this section we extend consideration of these issues, which were introduced in Chapter 2,
to the multiple independent variable case. Although we review the steps necessary for the
hand computation of power and precision, and provide the necessary Appendix tables, we
recommend the use of a contemporary user-friendly computer program such as Sample Power
(SPSS) or Power and Precision (Borenstein, Cohen, and Rothstein, 2001), which will facil-
itate the user’s appreciation of the interaction among the determinants of statistical power.
The emphasis of this presentation is an understanding of the influences that contribute to the
precision and power of any study, so that each investigator can make appropriate choices of

such parameters in planning or evaluating research.

3.7.2 The Precision and Power of A2

As noted earlier, both precision and power are determined as a function of the effect size,
the sample size, and the selected probability parameter. For simplicity let us begin with the
assumption that we will be using 95% CI or, equivalently for the special case of the nil
hypothesis, the .05 significance criterion. As we plan our study, the question is what precision
and power will we have for a given proposed n, or for each of a set of alternative ns. The effect

size that is relevant is the population R?.

Precision

Suppose that we anticipate that the population R? as estimated by a set of six IVs is about .2.
The sample size that we have budgeted for is 120 cases. Application of Eq. (3.6.3) gives us
the SEy. and tells us that an empirical estimate of this population value (which would average
24 in a sample of this size; see the section on shrinkage) would have an 80% CI of .16 — .32.
Our substantive theory will be needed to guide us in the judgment as to whether this CI is so
large that it fails to contribute an increment to our knowledge about these phenomena. If it is
Judged that it is too large, there are two possible remedies. The simple, but often expensive
and sometimes infeasible one is to increase the sample size. If this is possible the precision
can be recomputed with a new n.

An alternative method of increasing the df for precision (and power) is to reduce the number
Of IVs from the proposed six to a smaller number, if that will result in no material loss of effect
S12¢ or critical information. The effective  in these equations is not the actual sample size but
;?t];r the df, whichis n — k — 1. If some of the variables are substantially correlated it may
: Cat they can be usefully consolidated. If the loss to R? is small enough, a recomputation of

¢ CI' may demonstrate adequate precision.
ks 'I;I:e selected me can also be altered. As we argued earlier, it is often the case that an 80%
soi,e ntifciven a CI that yields 2 to 1 odds of including the parameter, may be adequate for the
€ purposes of the investigation.

¥_ -
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ic salary example. Suppose that we
i ion, let us return to our academic s . . -
~ For ag ,‘lllg:fai‘;‘i‘:l}n g another university department for the same issues. This departyey
interested in t faculty members. We anticipate that this departmsant is e.1 member of the same
ha;i;g;r ea?nd that the population R? will be about the same as Ilt wa: Om ﬂgaldgpanmem &
4 : 2 = .503 (80% CI = .40 — .61, Section 362)
e t data, where we found R . : : :
::Isvgtrfg 31);:) ;1; fhuerr;:oposed department the 80% ClI, given a .5 R? in the population, ‘would
beeon average .38 — .74. If this is too large to be informative, and we d.o got feel.tha.t using .the
2/1 odds rule to generate narrower CI would serve our purpose, there is httle‘pomt in carrying
out the study. Once again, this SE was developed for large samples, so caution must be ygeg
in applying it to small samples.

Power Analysis

As we noted earlier, statistical power analysis is concerned \iVith the special case of detenpg
ing the probability that the sample value will be si gniﬁc.ar'xtly d1ffeFent from some hy;;lothc:ﬁlza
value, typically one of no effect such as a zero R2. This is a special case because When the o
does not include this null value the statistical criterion has been met (at the o gntenon us
to determine the CI). Again, one employs the appendix tables (or more conveniently a co;n;
puter program) by selecting the expected population R2, the propo.se.d sample n,.the nutm ﬂfe
of predictor variables, and the significance criterion, and determining (or reading ou )bles
probability that the sample CI will not include the null value. Although more complete ta

for this purpose are provided in J. Cohen (1988), this can also be accomplished by following
these steps:

g . =01
1. Set the significance criterion to be used, o Provision is made in the appendix for o 0
and o = .05 in the L tables (Appendix Tables E.1 and E.2).
2. Determine the population effect size ES for R? —

R2
(3.7.1) 2 L DA
f 1-R?

3. Determine L by

(3.7.2) L =f2(n oy k i 1)

; dix
4. Determine the power by finding the row corresponding to the df in the selected appe?

. Jum?
table, locating an L as close as possible to the computed value, and looking up the o
to determine the estimated power,

» @ population R2
@ = .05, our chances of finding the sample v,

of .2—even using the less €
better than 50-50.

alue to be statistically significant are 0 J
. the
Ptably low it may be increased by incrcaSﬁslgused ’
g the selecteq value of o. The first two .Stepcated fof
d power and g2 are as shown earlier. L is 1°

When thfe €xpected power ig unacce
(maml).' by InCreasing n) or by lowerin
determine the n* required for desire
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the row corresponding to the df and column corresponding to the desired power. Then nx is
determined by

L

In the proposed example of population R? = .20, s0 ES = f* = R*/(1-R) = 2/1-2)=
25, if we desire power = .80 we will need L = 10.90 (Appendix Table E.2, with 3 df) so that
nx = (10.90/.25) + 3 + 1 = 48.

Sometimes the effect size can be increased by changes in the sampling strategy (for example,
by selecting more extreme subjects), by improvement of measures (increases in their reliability
and validity), or by altering the experimental protocol to produce a stronger experimental
manipulation. These methods of enhancing power are likely to be especially positive for the
scientific payoff of a study, and thus may often be recommended as the first alterations to be
considered.

Although it is much to be preferred that the substantive theory and prior research determine
the expected population value of R2, some rules of thumb have been suggested for the use of
researchers who are unable to provide more appropriate values. Values of .02, .13, and .26
have been proposed as potentially useful estimates of small, medium, and large effect sizes for
the population R2. These values should probably be adjusted upward by the researcher who
intends to use more than a few IVs.

(3.7.1) n

3.7.3 Precision and Power Analysis for Partial Coefficients

Precision

As noted earlier, partial coefficients for a given IV share the same numerator, the exception
being the raw unit regression coefficient for which the ratio of standard deviations of ¥ and
that IV also appears. When the units employed for B are meaningful, the CI for B will provide
the most useful information about the precision of the expected sample values. (See Chapter 5
for a discussion of methods of improving the utility of measure units.) When the units are not
meaningful, precision is usually referenced to p as a function of its SE.!°

For example, again using our academic salary illustration, we are interested in the value
of the gender difference in salary in departments from some other academic field than that
represented by our current data. We would like to be able to assess the sex difference with a me
of $1000. The researcher may know that about 30% of the faculty members in these departments
are women: thus the sd of sex will be about 1/-30(.70) = .458 in the proposed study. The sd of
faculty salaries may be determined from administration records or estimated from the current
;mfiiy :s about $8000. Using Eq. (3.6.1), rearranging, and solving for SEg = me/2 = $500,

¢ fin

$8000%(1 — .40)
21(1 - .10)
n—k—1=948,

(n — k — 1)($500)* =

S0 that we will need nearly a thousand cases. If, on the other hand, we were content with a me

Lefpresenting about 2/1 odds of including the population value (so that we could tolerate a SEp
$1000), a sample of about 230 would suffice.

\

1o
We do not provide CIs for sr or sr?, which are asymmetrical and complex.
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Suppose, however, that for the research that we are planning we have no reasongp
precedent for estimating B, previous research having used different measures of this cole
struct than the one we are planning to employ. In this case we may use the B obtained)-;
these studies to estimate the value expected in the planned study, and appropriately adjust for
correlations with other IVs.

Statistical Power of Partial Coefficients

As we have noted, partial coefficients have a common test of statistical significance. There.
fore they also have in common the statistical power to reject a false null (nil) hypothesis that the
population value is zero. In the case of statistical power, however, it is convenient to define the
effect size as the increment in R? attributable to a given IV, that is, its s2. As we noted earlier
in the chapter, sr differs from B by the square root of its tolerance, the proportion of its vari-
ance that is independent of other predictors. As noted previously and discussed in Chapter 10,
other things being equal, the SEs of the partial effects of an IV, and thus imprecision in their
estimates, are generally increased by increases in correlation with other IVs.

In order to calculate the power of the proposed study to reject the null hypothesis that the
partial coefficients are nonzero, one enters the first row of the power tables (or, preferably,
a computer program) for the selected significance criterion with the L determined from the
proposed n and the estimated proportion of ¥ variance that is uniquely accounted for by the
IV in question. If it should happen that the investigator can more readily estimate B or B, thfise
coefficients can be converted to sr2 providing that the multiple correlation of the IV in questio?
with the other IVs and, in the case of B, Sy, and S; or their ratio, can be estimated. .

To illustrate, suppose that we want to have 90% power to detect a sex difference 10 salary
under the same assumptions as in the previous example. Using Eq. (3.5.8) to convert from
to sr, we estimate

o conl o BT
sr = $3000 (m) (Jl = .3) =744,

ively:
and sr? = .02. These parameters may be looked up in the computer program. Alternall

we may compute the ES =

sr?

2 _— —

(3.7.2) = T |
If R? = .20 the ES = .02/.80 = .025. Looking up L in Appendix Table E.2 for row f,fat Wwe
and column B = .90 we find that L = 10.51, and applying this to Eq. (3.7.1), W¢ ﬁ0nS Furhe
will need 422 cases to have a 90% chance of rejecting the null hypothesis at & = 0' esis &
calculation will show that we will need nx = 510 if we wish to reject the null hyf;t ent with
the .01 level. If this number is too large, we may reconsider whether we can be €0
80% power.!! o the con

In general it is likely to be more practically and theoretically useful to exam:jeci ed that
sistency of the new data against some non-nil value. For example, it might b ble 10 othef
any discrepancy as large as $1000 in annual salary (net of the effects attﬂbume ffere”
causes) would be unmistakably material to the people involved. In such a case v re-ent
between our estimated population value ($3000) and this value is only $2000; 50

the equation with this value.

i
they quic! (::1"
. 5 . i t
11One reason we like computer programs for determining power and needed sample sizes 15 d;:d & impro""‘m

the researcher to appreciate how statistical power is closely linked to , ES, df, and n, which may !

in judgments and strategy on these issues.
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Once again, for those investigators who absolutely cannot come up with amore substantively
or theoretically based estimate of the population effect size, some rules of thumb are sometimes
useful. These values are usually expressed in terms of the proportion of the Y variance that is
not explained by other variables that is explained by X;. Small effects may be defined as 2%
of the unexplained variance, medium effects as 15% of the unexplained variance, and large
effects as 35%. As we will see in Chapter 5, these values are relatively large when we are
talking about a single IV, and it may be at least as appropriate to use the values of r given in
Chapter 2 as small, medium, and large, when one is examining a single s7;.

Several other topics in power analysis are presented in Chapter 5, following the exposition
of power analysis when multiple sets of IVs are used. Among the issues discussed there are
determination of power for a given n, reconciling different nxs for different hypotheses in
a single analysis, and some tactical and other considerations involved in setting effect size and
power values.

3.8 USING MULTIPLE REGRESSION EQUATIONS
IN PREDICTION

One use of MRC is for prediction, literally forecasting, with only incidental attention to expla-
nation. Although we have emphasized the analytic use of MRC to achieve the scientific goal of
explanation, MRC plays an important role in several behavioral technologies, including person-
nel and educational selection, vocational counseling, and psychodiagnosis. In this section we
address ourselves to the accuracy of prediction in multiple regression and some of its problems.

3.8.1 Prediction of Y for a New Observation

The standard error of estimate, SEy,_j, as We have seen, provides us with an estimate of the
magnitude of error that we can expect in estimating ¥ values over sets of future X;, X5, . . ., X
values that correspond to those of the present sample. Suppose, however, we wish to deter-
mine the standard error and confidence intervals of a single estimated Y from a new set of
observed values X0, X50> - - - » Xxo- In Section 2.8.2 we saw that the expected m:agnitude of
error increases as the X; values depart from their respective means. Thereason fqr this shou?d be
clear from the fact that any discrepancy between the sample estimated regression coefficients
and the population regression coefficients will result in larger errors in ¥, when X; values are
far from their means than when they are close.

Estimates of the standard error and confidence intervals for
XXy, ... , X}; is given by

Y, predicted from known values

o I z.2 B"Z'OZJ'O
(3.8.1) sdy, g = _7Yﬁ——Y n 1Y T 2 TR
i

Where the first summation is over the k IVs, the second over the k(k — 1)/2 pairs of IVs (i.e.,
! <J) expressed as standard scores, B;; is the p for estimating X; from Xj, holdm_g constant
the Temaining k — 2 IVs, and R? is literally R?,, ok Although at first glance th{S formul_a
appears formidable, a closer exa‘mination will rlha'ﬁc clear what elements affect the size of this
error. The SE,_; is the standard error of estimate, and as in the case of a single_IV, we see that
increases in it and/or in the absolute value of the IV (z;,) will be associated with larger erTor.
The terms that appear in the multiple IV case that did not appear in the Eq. (2.8.3) for the single
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variable case (B; and R?) are functions of the relationships among the independent ;
When all independent variables are uncorrelated (hence all B,; and a1 R? equy) % Varigple,
that the formula simplifies and sdyo_f,o is minimized (for constant SEy_?, - ;0)’ We g,

It is worth emphasizing the distinction between the validity of the sigmﬁcanc;ot\ralues),
formed on partial coefficients and the accuracy of such coefficients when ygeq in r:(s;s Per.
In analytic uses of MRC, including formal causal analysis, given the current leve] I;f thlcuon,
ical development in the behavioral and social sciences, the information MOt typicay] €orgy.
upon is the significance of the departure of partial coefficients from zero anq the Sign};ganed
coefficients. The significance tests are relatively robust to assumption failure, paxﬁculaﬂsuch
when 7 is not small. Using the regression equation for prediction, on the other hang, requ);rso
applying these coefficients to particular individual variable values for which the COHSequeni
of assumption failure is likely to be much more serious.

As anillustration, let us examine the scatterplot matrix (SPLOM)'2 for our running examy,
of academic salaries. Figure 3.8.1 provides the scatterplot for each pair of variables, inclyg.
ing the predicted salary and the residual. As can be seen, the original distributions of years
and publications are not as symmetrical as is the distribution of salary. Probably as 3 conse-
quence, the residuals above the mean Y appear to have a somewhat higher variance than thog
below the mean (the reader may check to determine that this is indeed the case). The variance
of the residuals otherwise looks passably normal (as indeed they should, because this example
was generated to meet these assumptions in the population). Failure of the homoscedasticity
assumption may not be serious enough to invalidate tests of statistical significance, but it still
could invalidate actual prediction if based on the assumption of equal error throughout the

distribution.
3.8.2 Correlation of Individual Variables With Predicted Values

Further insight may be gained by noting that regardless of the sign, magnitude, or significance
of its partial regression coefficient, the correlation between X, ; and the ¥ determined from the
entire regression equation is

(3.8.2) = ot

Ry 123. %
Thus it is invariably of the same sign and of larger magnitude than its zero-order with Y -(5ee
values at the bottom of Fig. 3.8.1 for reflection of this in our running example.) Reﬂectl? %10;
this fact may help the researcher to avoid errors in interpreting data analyses in which varial o
that correlate materially with ¥ have partial coefficients that approach zero or B1c of (.)pp;-s[s
sign. When partial coefficients of the X; approximate zero, whatever linear relationship :i f
between X; and Y is accounted for by the remaining independent variables. Because I the
its zero-order correlation with ¥ nor its (larger) correlations with ¥ is therel?)’ gl d.
interpretation of this finding is highly dependent on the substantive theory being & ort out
Even without a full causal model, a weak theoretical model may be employed o SclusiOn
the probable meaning of such a finding. One theoretical context may lead to the conuadoﬂ-
that the true causal effect of X; on Y operates fully through the other IVs 10 tne i?ing ;
Similarly, when the By, and I'y; are of opposite sign, X; and one or more of the rema! joled
are in a suppressor relationship, Although it is legitimate and useful to interpret th"fﬂ}; y (@
relationship,ﬂ it is also important to keep in mind the zero-order correlations of Xi
hence with Y).

asse
12The fact that we have not previously introduced this graphical aid should not be taken to denY a:[a analf™ 2
such a matrix is probably the first step in analyzing a data set that should be taken by a comp i
Chapter 4). The figures along the diagonal reflect the distribution of each variable.
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3.8.3 Cross-Validation and Unit Weighting

FIGURE 3.8.1 Scatterplot matrix for the academic salary example.

Several alternatives to regression coefficients for forming weighted composites in prediction
haVe'been proposed (Darlington, 1978; Dawes, 1979; Green, 1977; Wainer, 1976). Although
P Wweights are guaranteed to produce composites that are most highly correlated with zy (or ¥)
In the sample on which they are determined, other weights produce composites (call them uy)
tha.t are almost as highly correlated in that sample. “Unit weighting”, the assignment of the
weights of +1 to positively related, —1 to negatively related, and 0 to poorly related IVs are
Popular candidates—they are simple, require no computation, and are not subject to sampling
error (Green, 1977; Mosteller & Tukey, 1977; Wainer, 1976). For our running example on
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academic salary, we simply add (that is, we use weights of +1.0) the z scores o fo
for time since Ph.D., publications, and citations, and subtract (that is, uge weigh
each score for female to produce the composite iy for each subject. We find that , ook
944 with the p-weighted 2y (or Y), and therefore (not surprisingly) .670 with . (YOr I;;elates
modestly lower than the .709 (= Ry) of Zy with zy (or Y). » Only
However, the real question in prediction is not how well the regression equatiop deterd

for a sample works on that sample, but rather how well it works in the population or on of
samples from the population. Note that this is not the estimate of the population 02, (ie ﬂ:r
“shrunken” value given in Eq. 3.5.5), but rather an estimate of the “cross-validated” r2‘: foe
each sample’s B applied to the other sample, which is even more shrunken and which myayy b:
estimated by

ach gy,
ts of <)

(n+k)
(n—k)

(3.8.3) R=l-0-R’Y

(Rozeboom, 1979). R? answers the relevant question, “If I were to apply the sample regression
weights to the population, or to another sample from the population, for what proportion of
the Y variance would my thus-predicted Y values account?”

For our running example with n = 62, our sample regression equation yields R=1-
(1 —.5032)(62 + 4)/(62 — 4) = .4347, so R = .659. We found earlier, however, that the
unit-weighted composite for the cases we have yielded an r = .670, greater than R. Now this
value is subject to sampling error (so is R), but not to shrinkage, because it does not dependon
unstable regression coefficients. As far as we can tell, unit weights would do as well or better
in prediction for these data than the sample’s standardized regression weights based on only
62 cases.

Unit weights have their critics (Pruzek & Fredericks, 1978; Rozeboom, 1979). For certain
patterns of correlation (suppression is one) or a quite large n : k ratio (say more than 20 or 39),
unit weights may not work as well in a new sample as the original regression coefficients will
An investigator who may be in such a circumstance is advised to compute R and compar it
with the results of unit weighting in the sample at hand.

3.8.4 Muiticollinearity

. . . 1 dto
The existence of substantial correlation among a set of IV's creates difficulties usually rebfizﬁve
e subs

as the problem of multicollinearity. Actually, there are two distinct problems—’th
Interpretation of partial coefficients and their sampling stability.

Interpretation

i ted IVS
We have already seen in Section 3.4 that the partial coefficients of highly conel:;]e s

analyzed simultaneously are reduced. Because the IVs involved lay claim 0 large - utio®
portion of the Y variance by definition, they cannot make much by way of unique ol s
Interpretation of the partial coefficients of IVs from the results of a simultancos rlea in

of such a set of variables that ignores their multicollinearity will necessarily - @SS that [h'e
: Att‘ention to the R? of the variables may help, but a superior solution requir® il
Investigator formulate some causal hypotheses about the origin of the mu]ﬁcolmf of ja”
1s ﬂ.l(’UEht that the shared variance is attributable to a single central property> Frme;( or &F
variable, it may be most appropriate to combine the variables into 2 single 10 able causa]
the more peripheral ones (Sections 4.5 and 5.7), or even to turn to a latent va'.ﬂ each oft*

model (see Chapter 12). If, on the other hand, the investigator is truly interested 1
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variables in its own right, analysis by a hierarchical procedure may be employed (Section 5.3).
To be sure, the validity of the interpretation depends on the appropriateness of the hierarchical
sequence, but this is preferable to the complete anarchy of the simultaneous analysis in which
everything is partialed from everything else indiscriminately.

Sampling Stability
The structure of the formulas for SEp_(Eq. 3.6.1) and SEg, (Eq. 3.6.2) makes plain that they

are directly proportional tov'1/(1 — R,?). A serious consequence of multicollinearity, therefore,
is highly unstable partial coefficients for those IVs that are highly correlated with the others.!3
Concomitantly, the trustworthiness of individually predicted Y, is lessened as the R?s for a set
of IVs increase, as is evident from the structure of Eq. (3.6.1). Large standard errors mean
both wide confidence intervals and a lessened probability of rejecting a null hypothesis (see
Section 3.7). Chapter 10 discusses issues of multicollinearity in more detail.

3.9 SUMMARY

This chapter begins with the representation of the theoretical rationale for analysis of multiple
independent variables by means of causal models. The employment of an explicit theoretical
model as a working hypothesis is advocated for all investigations except those intended for
simple prediction. After the meaning of the term cause is briefly discussed (Section 3.1.1) rules
for diagrammatic representation of a causal model are presented (Section 3.1.2).

Bivariate linear regression analysis is extended to the case in which two or more independent

variables (IVs), designated X;(i = 1, 2,...,k) are linearly related to a dependent va1;iable Y.
As with a single IV, the multiple regression equation that produces the estimated Y is that
linear function of the k IVs for which the sum over the n cases of the squared discrepancies of
Y from ¥, £(Y — ¥)?, is a minimum.
. The regression equation in both raw and standardized form for two IVs is presented and
interpreted. The standardized partial regression coefficients, B;, are shown to be a function of
the correlations among the variables; B; may be converted to the raw score B; by multiplying
each by sdy /sd; (Section 3.2).

The measures of correlation in MRC analysis include:

L .R, which expresses the correlation between Y and the best (least squared errors) linear
function of the k IVs (¥), and R?, which is interpretable as the proportion of ¥ variance
accounted for by this function (Section 3.3.1).

2. Semipartial correlations, s7;, which express the correlation of X; from which the other

's have been partialed with Y. sr? is thus the proportion of variance in Y uniquely associated
With X;, that is, the increase in R? when X; is added to the other IVs. The ballantine is
Introduced to provide graphical representation of the overlapping of variance with ¥ of X; and
X, (Section 3.3.2),

3. .Partial correlations, pr;, which give the correlation between that portion of ¥ not linearly
associated with the other IVs and that portion of X; that is not linearly associated with the other

S, In contrast with sr;, pr; partials the other IVs from both X; and Y. pr? is the proportion of

variance not associated with the other IVs that is associated with X; (Section 3.3.3).

. EaCh_ of these coefficients is exemplified, and shown to be a function of the zero—ordt?r
fOl're]atllon coefficients. The reader is cautioned that none of these coefficients provides a basis

' a satisfactory ¥ variance partitioning scheme when the IVs are mutually correlated.
\

[3eis
This is the focus of the discussion in Section 4.5.
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ssible for Y and two IVs are discussed, exemn:

and indirect effects is explained: andm lifieq, i

IVs are illustrated. Mutual SuPPreSsi?Si?s o,
CauSal

effects will occur when any of the three zero-order correlations is less than the
other two (Section 3.4.1). Spurious effects and entirely indirect effects can b pr.od_“Ct of the
when the causal sequence of the IVs is known (Section 3.4.2). i dlsunguished
The case of two IV is generalized to the case of kIVs in Section 3.5. The u
coefficients in the interpretation of research findings is discussed and illustrat e Of' ey
examplps. The relationships among the coefficients are given. ed with cop
: Stansﬁc?l inference with k IVs, including SEs and CIs for standardized and
;120;1 :roeflf;lments and R? are pre§ented in Section 3.6. CIs for the difference betwer;1 . unitregre
De:e ;n?;w:.as well as a series of statistical tests on multiple and partial ¢ OCﬁ?(:_ndePendent
o anacli 1;)lilusct>rf th; precision of expected ﬁndings from proposed invesl:nts:
) ated. Sta_tlsucal power an?ly51s is shown to be a special cas 1gations i
 age ot 1‘ad'(c) ;1 non'-ml yalue ofa mul'tlple or partial coefficient (Section 3e7When the
e fsr alne 0111 s1ttt)1atlons are described in Section 3.8, including the ! )-_ '
sdsimacysof the. esm:’ﬁy o ;ervefl case. Correlations among the predictors wl.;lrledlcm)n .
Pt e eosrt;;a ttihe md1v1dua1. coefficients and the stability of the maffect th;
on may not yield optimal prediction for future studie;) g:talstels
5.
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