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Statistical Difficulties of Detecting
Interactions and Moderator Effects

Gary H. McClelland and Charles M. Judd

Although interaction effects are frequently found in experimental studies, field researchers report
considerable difficulty in finding theorized moderator effects. Previous discussions of this discrep-
ancy have considered responsible factors including differences in measurement error and use of
nonlinear scales. In this article we demonstrate that the differential efficiency of experimental and
field tests of interactions is also attributable to the differential residual variances of such interac-
tions once the component main effects have been partialed out. We derive an expression for this
residual variance in terms of the joint distribution of the component variables and explore how
properties of the distribution affect the efficiency of tests of moderator effects. We show that tests
of interactions in field studies will often have less than 20% of the efficiency of optimal experimen-
tal tests, and we discuss implications for the design of field studies.

Moderated Multiple Regression

Many theories in psychology posit that one independent vari-
able moderates the relationship between another independent
variable and the dependent variable, or, equivalently, that two
independent variables interact so that the effect of either one on
the dependent variable depends on the level of the other. Statis-
tical tests for interactions between categorical variables are well
known in the analysis of variance (ANOYA). Saunders (1955,
1956) was apparently the first to develop a methodology for
testing interactions or moderator effects for continuous vari-
ables and to refer to this methodology as "moderated multiple
regression." Cohen (1978) and Arnold and Evans (1979),
among others, formalized and verified Saunders's suggestion;
Baron and Kenny (1986) distinguished between the testing of
moderator effects and mediating effects; and Jaccard, Turrisi,
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and Wan (1990) and Aiken and West (1991) provided thor-
ough, modern treatments of testing and interpreting moderator
effects.

The increasing use of moderated regression has produced a
conundrum: Although experimentalists frequently detect in-
teraction effects, nonexperimentalists conducting field re-
search have found moderator effects to be extremely difficult to
detect. We investigate this conundrum by first describing the
moderated regression methodology and demonstrating its
mathematical equivalence to methodologies for detecting inter-
actions in the ANOVA. We then consider the evidence that
moderator effects are difficult to detect in field studies. Next,
we demonstrate that differences in the joint distributions of the
predictor variables between experiments and field studies are
at least partially to blame for the difficulty in detecting modera-
tor effects in field studies. Finally, in light of these issues, we
suggest how field researchers might increase the statistical
power of their tests of moderator effects.

In moderated multiple regression, standard multiple regres-
sion procedures are used to test for the existence of moderator
effects by testing the statistical reliability of the product XT. in
the following model:

Y, = ( 1 )

A mathematically equivalent way of implementing this test is to
determine whether the residual part of the product XZ is re-
lated to the residual part of Fafter both ̂  and Z have been used
to predict both XZ and Y. All else being equal, the greater the
value of the partial regression coefficient1 /3XZ, the greater the

1 We follow the usual convention of using Greek letters to represent
unknown model parameters. These partial regression coefficients
should not be confused with the standardized regression coefficients
reported as "beta" by some computer programs.
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moderating effect of Z on the relationship between X and Y (or,
equivalently, the greater the moderating effect of ^Ton the rela-
tionship between Z and Y). Thus, the test of the null hypothesis
Ho'-Pxz = 0 is a test for the existence of a reliable moderating
effect of Zon the X- Y relationship. As Cohen (1978), Arnold
and Evans (1979), Cronbach (1987), Aiken and West (1991),
and others have noted, it is important that this test be hierarchi-
cal, determining whether f)Xz is reliably different from zero
when controlling for both Xand Z. The corresponding squared
partial correlation, or proportional reduction in error (PRE;
see Judd & McClelland, 1989), describes the model improve-
ment due to adding the product term.2 The equivalence of the
test of H'.Pxz = 0 in the moderated multiple regression model
of Equation 1 to the test of an interaction in a 2 X 2 experimen-
tal design in an ANOVA is easily demonstrated by using con-
trast codes of— 1 and +1 as values of both Xand Zto represent
the levels of the independent variables. The statistical tests are
identical in the two cases. Thus, experimental interaction can
be viewed as a moderater effect and either independent variable
can be viewed as the moderator.

Difficulty of Detecting Moderator Effects

Experimentalists frequently report finding statistically reli-
able interactions, and few complain of the difficulty of finding
such effects. By contrast, as Morris, Sherman, and Mansfield
(1986) noted, despite frequently compelling theoretical reasons
for expecting moderator effects and despite the widespread
knowledge of how to identify such effects statistically, modera-
tor effects are notoriously difficult to detect in nonexperimen-
tal field studies. Many authors have lamented the difficulty of
detecting reliable moderator effects in field studies (e.g., Jac-
card, Helbig, Wan, Gutman, & Kritz-Silverstein, 1990; Morris
et al., 1986; Zedeck, 1971). For example, Zedeck (1971) re-
ported a number of unsuccessful attempts to find moderator
variables and concluded that "moderators are as elusive as sup-
pressor variables" (p. 305).

Even when reliable moderator effects are found, the reduc-
tion in model error due to adding the product term is often
disconcertingly low. Evans(1985), for example, concluded that
moderator effects are so difficult to detect that even those ex-
plaining as little as 1% of the total variance should be consid-
ered important. Champoux and Peters (1987) and Chaplin
(1991) reviewed much of the social science literature and re-
ported that field study interactions typically account for about
l%-3% of the variance.3 We illustrate this problem shortly with
an analysis of a case study in which the interaction was signifi-
cant, the estimated partial regression coefficient was as large as
it could theoretically be, and yet the squared partial correlation
coefficient was only .01.

Periodically, the difficulty of detecting moderator effects
leads investigators to question the appropriateness of assessing
these effects by testing the partial regression coefficient of the
XT. product as outlined earlier. Those investigators then pub-
lished recommendations for alternative procedures that were
subsequently shown to be flawed. For example, Allison (1977),
Cronbach (1987), Dunlap and Kemery (1987), Friedrich
(1982), and Wise, Peters, and O'Connor (1984) all demon-
strated that various purported alternatives to moderated multi-

ple regression are incorrect. We know of no credible published
refutation of the appropriateness of testing the reliability of the
partial regression coefficient for the product as a test of modera-
tor effects. Yet, Evans (1991) noted that despite repeated warn-
ings, many investigators are so frustrated by not finding theo-
rized moderator effects that they continue to use and to invent
inappropriate statistical procedures. This state of affairs un-
doubtedly reflects bafflement as to why moderator effects are
so difficult to detect in field studies despite compelling theoret-
ical expectations for such effects and despite the apparent ease
with which such effects are found in experiments.

Relative Statistical Power

A number of factors accounting for the differential statistical
power of experiments and field studies for detecting interac-
tions have been identified. First, overall model error is fre-
quently less in experiments because they are conducted under
more controlled laboratory conditions than is possible in most
field settings. Less noise means that reliable effects are easier to
detect. Second, Busemeyer and Jones (1983) and Aiken and
West (1991) discussed the considerable deleterious effect of
measurement error on the detection of moderator effects.
Errors in measuring X and Z are exacerbated when Xand Z are
multiplied to form the product variable XZ* Studies con-
ducted by experimentalists, who can assign observations to lev-
els of A" and Z and thus control measurement error to a greater
extent than can field researchers, are less likely to be affected
adversely by measurement error even though they are not im-
mune. Third, theoretical constraints on the nature of the inter-
action in field studies often restricts the magnitude of the mod-
erator regression coefficient. Experimentalists frequently re-
port disordinal or crossover interactions, but theory often leads
field researchers to expect only ordinal or fan-shaped interac-
tions. For example, coping responses and social support are
presumed to moderate the relation between stressful life events
and adverse outcomes such as depression (e.g., Finney, Mitchell,
Cronkite, & Moos, 1984; Pearlin, Menaghan, Lieberman, &
Mullan, 1981). However, it may not be reasonable theoretically
to presume that coping responses and social support can be so
strong as to make stressful life events have an antidepressant
effect. The theoretical constraint of ordinal interactions effec-
tively limits the possible magnitude of /3XZ and therefore makes
such effects more difficult to detect in field studies. Finally,
other factors such as the functional form of the interaction (i.e.,
products of higher order terms) and the nonlinearity of X and Z
are known to pose difficulties in the detection of moderator
effects (Busemeyer & Jones, 1983; Jaccard et al., 1990; Lubinski

2 Note, as we discuss more fully shortly, that this is not the same as
saying that the multiplicative term accounts for a particular propor-
tion of the variance.

3 As Aiken and West (1991) noted, it is important to recognize that
these authors are making statements about the squared semipartial
correlation (i.e., increment in R2), which is not the most useful effect
size index in this context. Nevertheless, the point here is simply that
reported effect sizes for moderator terms are often small.

4 Kenny and Judd (1984) showed that these problems can be ame-
liorated using structural equation models.
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& Humphreys, 1990). These problems pose difficulties for both
experiments and field studies, although they may be more prob-
lematical for field studies, which generally have more levels of
XandZ.

The aforementioned list is incomplete. That is, even if both
experiments and field studies are affected to the same degree
by these problems, experiments still have a considerable advan-
tage over field studies in the statistical detection of interactions
and moderator effects. We demonstrate that the difference in
relative statistical power between the two types of studies is
attributable at least in part to properties of the joint distribu-
tion of X and Z, and we quantify that difference in terms of
relative efficiency.

Component-Product Covariances

Before considering the properties of the distributions of X
and Z that facilitate the detection of interactions in experi-
ments relative to field studies, we first eliminate one property
that has caused considerable confusion in the literature. That
property is the covariance between Xand XZ or between Z and
XZ. Some authors (e.g., Althauser, 1971; Morris et al., 1986)
have mistakenly attributed the difficulty of detecting modera-
tor effects to the inherent covariance between the individual
components and their product. However, Aiken and West
(1991), among others, noted that the covariances C(X, XZ)
and C(Z, XZ) are almost always dramatically reduced when X
and Zare centered before performing the moderated regression
analysis. When X and Z are centered and are either jointly
symmetric or stochastically independent, C(X, XZ) = C(Z,
XZ) = 0 (Finney et al., 1984). Furthermore, Friedrich (1982)
and Smith and Sasaki (1979) showed that it is always possible to
change the origins of the X and Z scales (by subtracting appro-
priate constants) to ensure that C(X, XZ) = C(Z, XZ) = 0.
Cohen (1978) demonstrated that changes of scale origin do not
affect Pxz or its statistical test. Given that a change of origin can
always be found to ensure a zero covariance between the prod-
uct and its components and given that such a change of origin
does not alter the moderator statistical test,5 the covariance, if
any, between the components and their product is in principle
irrelevant for detecting moderator effects. In practice, it is some-
times useful to transform the origin to reduce or eliminate
C(X, XZ) and C(Z, XZ), thus avoiding computational prob-
lems in some computer algorithms for regression.

Residual Variance of the Product

At one level, the statistical power issues of testing the hierar-
chical addition of XZ to a model already containing X and Z
are the same as those of testing the addition of any other predic-
tor variable, say W, to the model. One such well-known power
issue concerns the variability of W; the effects of variables with
restricted ranges or reduced variances are difficult to detect
and sizes of those effects are often small. In hierarchical multi-
ple regression it is actually the residual variance in W(or the
unique variation in JFthat is not shared with either Xor Z) that
determines the statistical power of the test. This suggests that
the residual variance of XZ ought to be of concern when testing
for moderator effects. Unlike the general situation of adding an

arbitrary Wto the model, the residual variance of XZ, indeed
the complete distribution of XZ, is determined entirely by the
joint distribution of Xand Z. We provide a formula (derived in
the Appendix) for the residual variance of XZ and then use this
formula to demonstrate that, relative to experiments, statistical
power is inherently low in field studies because of the typical
joint distributions of X and Z,

We use the notation V(XZ.X, Z) to refer to the residual
variance6 of the product XZ after controlling for X and Z.
Although we prove a more general result in the Appendix, here
we make the simplifying assumption that Xand Z have already
been centered so that their expected values are zero. Then, the
residual variance of the product is given by

V(XZ.X, Z) = V(X)V(Z) + C(X\ Z2) - C2(X, Z)

C2(X2, Z ) V ( Z ) + C2(X, Z 2 ) V ( X )
~ 2C(X, Z)C(X2, Z)C(X, Z2)
V(X)V(Z)-C2(X,Z) (2)

where Fs represent variances and Cs represent covariances.
A number of useful insights can be derived from Equation 2.

First, Equation 2 demonstrates that the residual variance of the
product is completely determined by the properties of the joint
distribution of its components. Because the statistical power
for detecting a moderator effect and estimates of the size of that
effect depend on the variability of the residual product, we can
use Equation 2 to examine the properties of the joint distribu-
tion of Xand Z that are important in determining the residual
variance of the product.

Second, Equation 2 shows that the residual variance of the
product is simply the product of the component variances ad-
justed by various covariances. Not surprisingly, whatever re-
stricts the ranges or variances of .Yand Z must also reduce the
range and variance of the residual product. Furthermore, the
multiplication of the component variances means that any
range or low-variance problems are exacerbated when trying to
detect moderator effects.

Third, Equation 2 demonstrates that several covariances pro-
vide important adjustments to the product of the component
variances. Researchers using multiple regression need to be
concerned about the correlation or linear dependence between
predictors X and Z, represented in Equation 2 by the covari-
ance C(X, Z). However, Equation 2 implies that researchers
using moderated multiple regression also need to be concerned
about other covariances, namely, the covariances involving
squares of the predictors. If X and Zare stochastically indepen-
dent (this is much more than linear independence), then all of
the adjustment covariances in Equation 2 equal zero, so that the
residual variance of the product equals the product of the vari-
ances exactly. However, except for designed, balanced experi-
ments, it is unlikely that all of the covariances will be zero in
practice. Two bivariate distributions of X and Z having the

5 Changes of origin will, however, alter 0X, fiz, and their statistical
tests. See Aiken and West (1991), Jaccard, Turrisi, and Wan (1990), or
Judd and McClelland (1989) for careful instructions for testing and
interpreting these coefficients.

6 The residual variance of XZ should not be confused with the resid-
ual or error variance of Y.
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same component variances V(X) and K(Z) may yield much
different residual variances of the product because of their dif-
ferent covariance structures. Thus, we must consider how the
covariances adjust the residual variance of the product.

What do the covariances in Equation 2 reveal about the joint
distribution of Xand Zand its impact on the residual variance
of the product? We answer this question by providing three aids
for understanding the representation of the residual variance of
the product. First, we present simulations of experiments and
field studies that demonstrate how reduced variances for the
components X and Z exacerbate the difficulty of detecting an
interaction. Second, we present an intuitive, geometric inter-
pretation of the higher order covariances and their effects on
the detection of moderator effects. Finally, we compare the re-
sidual variances for various bivariate distributions to the maxi-
mum possible residual variance for the product to explicate and
to quantify the greater relative statistical efficiency of experi-
ments versus field studies for detecting interactions.

Simulated Experiments and Field Studies

We demonstrate the importance of the product of the compo-
nent variances (the first term in Equation 2) in determining the
residual variance of the product by simulating both experi-
ments and field studies in which all other covariances in Equa-
tion 2 are zero.7 We also use the simulated experiments and
field studies to show that the list of factors distinguishing the
two types of studies must be incomplete. In these simulations,
the overall model error was the same for both types of studies,
measurement error did not exist, the underlying models and
hence the sizes of @xz were the same, and the number of obser-
vations was held constant. Even after eliminating these possible
reasons for differences in statistical power between experi-
ments and field studies, the experiments still had a consider-
able advantage in their abil ity to detect interactions and modera-
tor effects.

For the simulations of both the field studies and the experi-
ments, ft, = 0, ftr = $z = fixz = 1, there were 100 observations, and
errors for the model were sampled from the same normal dis-
tribution with a mean of 0 and a standard deviation of 4.
Hence, both types of simulated studies had (a) the same model,
in particular, the same value for the moderator coefficient; (b)
the same number of observations; and (c) the same model error,
within sampling variation. The distributions of A" and Z values
were the only way in which the two types of simulated studies
differed. For the experiment simulations, we used 2 X 2 facto-
rial designs, with values of X and Z equal to +1 and — 1 and an
equal number of observations at each of the four combinations
of X and Z values. For the field study simulations, we used
values of X and Z that varied between the extreme values of +1
and — 1. More specifically, in the field study simulations, values
of X and Z were each sampled independently from a normal
distribution with a mean of 0 and a standard deviation of 0.5.
Values of X and Z were rounded to create equally spaced 9-
point scales ranging from -1 to +1 because ranges in field
studies are always finite and because ratings are often on scales
with discrete intervals.

From 100 simulations each, estimates of the model parame-
ter Pxz f°r the moderator or interaction effect equaled 0.977 and

0.979 for the field studies and experiments, respectively; both
types of studies produced unbiased estimates of {SXz- Also, as
intended, the root-mean-square errors were comparable in the
two types of studies: 3.99 and 4.02, respectively. However, the
standard errors of the estimate of the coefficient for the interac-
tion were much different: 1.72 for the field studies but only 0.41
for the experiments. This difference in the standard errors of
the estimate resulted in dramatic differences in the values of
the Student's t statistic, median8 rs(96) = 0.66 and 2.41, respec-
tively. The null hypothesis of no moderator effect was rejected
in a small minority (only 9%) of the simulated field studies
even though it was rejected in a clear majority (74%) of the
experiments, t(96) = 1.98, p = .05 (two-tailed). In other words,
91 % of the simulated field studies made Type II errors by fail-
ing to reject a false null hypothesis. This difference was also
reflected in the PREs or squared partial correlations for the
moderator variable: Median PREs were .009 and .057 for the
field studies and experiments, respectively, PRE(96) = 0.039, p
= .05.

Figure 1 shows the distributions of the residuals XZ.X, Z
(i.e., the values of XZ after the effects of X and Z have been
removed) for the simulated experiments and field studies. Note
that the range for the field studies was greatly restricted relative
to the experiments and that the distribution of the products was
much more peaked than the distributions of the components.
The variances of the residual products were 1.0 and .05 for the
experiments and the field studies, respectively.

In these simulations, the difference in the residual variances
of the products, which resulted from the difference in the joint
distributions, was solely responsible for the dramatic superior-
ity of the experiments over the field studies in the detection of
the moderator effect. Thus, the simulations demonstrate that
even if field studies and experiments are identical except for
their joint distributions of Xand Z, experiments still have dra-
matically more statistical power for detecting moderator or in-
teraction effects. Clearly, properties of the joint distribution of
the predictors must be added to the list of factors contributing
to the difficulty of detecting moderator effects in field studies.

Interpretation of Higher Order Covariances

We have just demonstrated that the multiplication of the
variances in Equation 2 seriously reduces the residual variance
of the product for field studies relative to experiments. Next, we
consider the effects of the various covariances. There are three
major terms in Equation 2 that adjust the product of the compo-
nent variances to yield the residual variance of the product. We
consider the effects of each term on the residual variance.

The residual variance of the product will be augmented (rela-
tive to the product of the component variances) when C(X2,
Z2), the first adjustment term, is positive. C(X2, Z2) is positive
whenever extreme values of X, either positive or negative, co-
occur with extreme values of Z, either positive or negative (re-

7 Computer code for these simulations is available from the authors.
8 We use medians instead of means because of the nonlinear nature

o f t . Our purpose here is not a definitive estimate of the test statistics
but simply a demonstration that the type of design can have a dramatic
impact on test statistics even when the underlying model is identical.
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Figure 1. Residual variance of the product from simulations
of experiments (a) and field studies (b).

why such observations are not useful for identifying a modera-
tor effect. If Z is large but X= 0, then there is no effect for Z to
moderate, and if X is large but Z = 0, then there is no modera-
tion of the effect of X. In either case, there can be no moderator
effect to detect. If there is a perfect + pattern, then one compo-
nent of the product is always zero, implying that all values of
XZ = 0. There is clearly no residual variance of the product in
this case; this implies that for a + pattern, C(X2, Z2) =
-V(X)V(Z) so that V(XZ.X, Z) = 0 in Equation 2.

In summary, the first adjustment term in Equation 2 simply
implies that the detection of moderators is facilitated to the
extent that the joint distribution of X and Z has an X pattern
and hindered to the extent that the joint distribution has a +
pattern.

C(X2, Z2) can be misleadingly large if observations tend to
cluster on one of the two diagonals of the joint bivariate distri-
bution. For example, in the extreme case when there is a perfect
correlation, either positive or negative, between X and Z, then
X2 = Z2 and maximizes C(X2, Z2). To ensure that it is X-ness
and not just "diagonal-ness" that is assessed, the second adjust-
ment term in Equation 2 reduces the calculated value of the
residual variance by subtracting C2(X, Z). As we show with a
pictorial example later, increasing the correlation between X
and Z, with all else being equal, improves the chances of detect-
ing moderator effects because the increase in C(X2, Z2) is
greater than the adjustment for C2(X, Z).

The third and final adjustment term in Equation 2 is the
most difficult to understand. The components of this term are
the two covariances C(X2, Z) and C(X, Z2). It is easier to
describe when these covariances will be zero, implying no ad-
justment to the residual variance, than it is to describe when
they will have large values. Finney et al. (1984) showed that
C(X2, Z) = 0 if either (a) Xand Z are stochastically indepen-
dent or (b) if there is bilateral symmetry such that the fre-
quency of the combination (X, Z) equals the frequency of ( — X ,
-Z). Thus, for either of these two covariances to be nonzero
requires both bilateral skewness11 and a complex form of sto-
chastic dependence. In particular, C(X2, Z) + 0 implies that
the conditional distribution of X is skewed for at least some

member that Xand Z are centered) .9 Such jointly extreme cases
are obviously useful for identifying moderator effects. For exam-
ple, suppose that Z moderates the linear effect of A'on Y. Then,
if there is no moderator effect, an extreme value of X will have a
large impact on Y. However, a simultaneously large value of Z
allows a large moderation in the large effect of ^Ton Y. Large
moderations of large effects are clearly easier to detect statisti-
cally than small moderations of small effects.

In essence, C(X2, Z2) measures the extent to which extreme
values of X co-occur with similarly extreme values of Z. Con-
sider a view from above of the bivariate frequency distribution
with A'on one axis and Z on another axis. If X2 always equaled
Z2, then all of the observations are on the diagonals so that the
bivariate frequency distribution of Xand Z forms a perfect "X
pattern."10 Thus, C(X2, Z2) can be considered a measureof the
"X-ness" in the joint distribution. C(X2, Z2) has a minimum
negative value when the joint distribution has a perfect"+ pat-
tern" in which extreme values of one variable always co-occur
with middle (or mean) values of the other variable. It is obvious

9 The central moment E(x2z2) is closely related to C(X2, Z2)—see
the Appendix—and is a key component in Mardia's (1970) definition
of bivariate kurtosis. Unfortunately, there are many other terms in that
definition of bivariate kurtosis, so we cannot make exact statements;
however, all else being equal, it is generally true that increasing bivari-
ate kurtosis implies greater variability in the residual of XZ.

10 We are grateful to Charles Berry and Ewart Shaw for suggesting the
interpretation of the higher order covariances in terms of their pat-
terns in bivariate contour plots.

11 The central moments E(xz2) = C(X, Z2) and E(x2z) = C(X2,
Z)—see the Appendix—along with E(x3) and E(z3), are the key com-
ponents in Mardia's (1970) definition of bivariate skewness. Thus, al-
though, again, the statement cannot be exact, it is generally true that
increasing bivariate skewness decreases the residual variance of the
product. Note also that for centered variables, C(X2, Z) = C(X, XZ)
and C(X, Z2) = C(Z, XZ); in other words, these terms represent the
remaining covariances between the individual predictors and their
products that are not eliminated by centering. In a sense, then, multi-
collinearity between the predictor variables and their product that is
not reduced by centering is a problem for detecting moderator effects.
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value of Z and that the degree of the skewness of X depends on
Z. When looking at a bivariate frequency distribution from
above, large positive values of C(X2, Z) indicate, with all else
being equal, a "left bulge," or "C pattern," and large negative
values indicate a "right bulge," or "reversed C pattern." That is,
extreme values of X tend to occur with middle values of Z.
Similarly, large positive values of C(X, Z2) indicate a "down-
ward bulge," or "U pattern," and large negative values indicate
an "upward bulge," or "inverted U pattern"; either bulge implies
that extreme values of Z tend to occur with middle values of X.
Thus, the third term in Equation 1 essentially adjusts down-
ward12 for ways other than + -ness in which extreme values of
one variable may co-occur with middle values of the other vari-
able.

In summary, Equation 2 indicates that the residual variance
of the product is greater and hence that moderator effects are
easier to detect to the extent that (a) extreme values occur (i.e.,
that the component variances are large) and (b) extreme values
of each predictor variable co-occur with extreme values of the
other predictor variable. In terms of the bivariate distribution
of X and Z, the residual variance of the product is greater the
more that observations have an X pattern (rather than a +
pattern), the less that observations are concentrated on one
diagonal of the X pattern, and the less that there are any asym-
metric bulges.

Note that Equation 2 makes it possible to calculate V( XZ.X,
Z) for any joint distribution of Xand Zthat may be anticipated
in a study. Calculating the residual variance of the product is
useful in any power analysis. However, if a sample is already
available, it is usually simpler to obtain the residual variance
directly from standard regression programs rather than from
Equation 2. V(XZ.X, Z) equals, by definition, the mean
square error (MSE) that results from regressing XZ on Xand
Z. Alternatively, in a full moderated regression model (i.e.,
Equation 1),

V(XZ.X, Z) =
MSE

(3)

where sest is the usual standard error of the estimate for the
product.13

Maximum Values ofV(XZ.X,Z)

The importance of the residual variance of the product in
determining the statistical power of the moderator test suggests
considering the maximum possible value of V( XZ.X, Z). It is
well known that for a finite range, the variance of a predictor
variable is maximized when exactly half of the observations are
at each extreme. It is easy to see that V( X Z.X, Z) is maximized
when both Xand Z have maximum variances for their ranges.
This in turn implies that the residual variance of the product is
maximized when one fourth of the observations are at each
extreme corner of a 2 X 2 design. This and similar results for
other designs are proved formally in the literature on the opti-
mal design of experiments. (See Mead, 1988, for a useful text-
book presentation of optimal design.) The use of the term opti-
mal in this literature means that such designs provide maxi-
mum statistical power and the smallest confidence intervals. It
does not mean that researchers, especially field researchers,

necessarily ought to strive for optimal designs. We discuss this
issue later.

It is difficult to compare values of V( XZ.X, Z) across differ-
ent studies because of differences in the ranges and scales of
predictor variables. However, the existence of a maximum pos-
sible residual product variance for fixed ranges suggests using
that maximum to create an index of design efficiency. We de-
fine the relative efficiency of a design as the ratio of its
V(XZ.X, Z) to the maximum possible value of V(XZ.X, Z)
for an optimal design with the same ranges of the predictor
variables. Another way to make this comparison is to deter-
mine, assuming equal mean square errors, the number of obser-
vations a design must have to provide the same efficiency (i.e.,
the same standard error of the estimate for the moderator coef-
ficient) as an optimal design. If the optimal design has n obser-
vations, then to have equal efficiency any other design needs to
have a number of observations equal to n times the inverse of
the relative efficiency.14

As an example, reconsider the simulations described earlier.
The experiments were optimal, with one fourth of the observa-
tions at each extreme combination of— 1 and +1. The variances
of X and Z were then each 1 and, because all of the covariances
were 0, the residual variance of the product equaled 1 X1 = 1. By
contrast, the variances of A'and Z from the simulations of the
field study were only about .24 (the rounding in the sampling
design required that these variances be estimated empirically).
Furthermore, small sampling variability in the values of the
covariance and the bivariate skew and kurtosis components
reduced V( XZ.X, Z) to an average value of .052, slightly below
the product (.058) of the two component variances. Thus, the
relative efficiency of the simulated field studies was only 5.2%.
To be as efficient as the experiments with 100 observations, the
field studies needed approximately 1/.052 = 19.23 times as
many observations, for a total of 19.23(100) = 1,923 observa-
tions. Note that this conclusion did not depend on the effect
size for the moderator term; no matter what the magnitude of
Pxz, the field studies required 19.23 times as many observations
as the experiments to produce the same standard error of the
estimate of the moderator effect.

12 We conjecture, but cannot prove, that this adjustment must always
be downward. The pattern of signs in this last term makes it appear
that an upward adjustment might be possible, but we cannot construct
a bivariate distribution where this is the case. The last term in this
adjustment appears to correct for double counting of bulges along diag-
onals.

13 Note that the actual residual variance of the product in the sample
is the determinant of power, so n is the appropriate divisor when com-
puting the variances and covariances in Equation 2. Hence, it may be
necessary to correct the estimates from regression programs in which
other divisors are used; however, such precision is usually not neces-
sary because the goal is to obtain only a general idea of the statistical
power in a particular study.

14 Increasing the number of observations to achieve equivalent effi-
ciency is not the same as obtaining equivalent statistical power because
critical values of the test statistics change with n and because of non-
linearities in power functions. However, the n necessary to achieve
equivalent efficiency is a good indicator of the n needed to obtain
equivalent statistical power.



382 GARY H. MCCLELLAND AND CHARLES M. JUDD

Examples of Design Relative Efficiency

It would be useful to examine the impact on relative effi-
ciency of all of the different ways in which bivariate distribu-
tions arising in field studies might differ from those in opti-
mally designed experiments. This is not feasible because of the
infinite number of possible bivariate distributions. Instead, we
consider some examples that illustrate various effects of the
properties of the bivariate distribution on relative efficiency.
Figure 2 displays a variety of possible bivariate distributions for
5 X 5 designs. The bold number above each distribution in
Figure 2 is the efficiency of that design relative to the optimal
"four-corners" design in the upper left-hand corner of Figure 2.
These distributions are scaled so that the modal category is
equally high in each plot in order to emphasize the basic shape
of each distribution. The variances and covariances reported
shortly were based on assigning the values — 1, -.5, 0, .5, and 1
to the five levels of each variable.

The first distribution in the first row depicts the optimal
design with equal numbers of observations at each corner. The
other two distributions in that row illustrate how efficiency
decreases as one of the four corners increasingly dominates.
This is the classic "unequal ri" problem for a two-way ANOVA.

0.92 0.8

0.44 0.25

0.24 0.06 0.

0.06 0.08 0.1

Figure 2. Illustrative joint distributions and their relative efficiencies
for detecting interactions. (Note that distributions are rescaled so that
the modal category has equal height across distributions.)

Note that a small disparity in the number of observations in
each corner has little effect and even when 50% of the observa-
tions are concentrated in one of the corners, relative efficiency
for the interaction is still 80%.

The second row of Figure 2 illustrates the effect of using
intermediate categories. Clearly, adding intermediate catego-
ries adversely affects relative efficiency. The relative efficiency
of the equal distribution across all combinations of the 5 x 5
design is only 25% of the maximum possible; in other words, to
have equal efficiency for assessing an interaction, the equal
distribution design needs four times as many observations as
the optimal four-corner design. Of course, using intermediate
levels allows the testing of higher order interactions and univari-
ate polynomial effects, tests that are not possible with the opti-
mal design. For example, the middle design in the second row
can test for univariate quadratic effects as well as Linear X
Quadratic and Quadratic X Quadratic interactions, which the
first design cannot.

The designs in the third row are calibrated so that the univari-
ate variances of X and Z are equal and then rescaled in the
display so that the frequency of the modal category is constant
across the row. The left-most design has maximal X-ness (given
the constraint of equal univariate variances), and the right-
most design has maximal +-ness. The middle design in the
third row is as close to being exactly between these two ex-
tremes as is possible given the coarseness of the design and the
equal variance constraint; that is, C(X2, Z2) is approximately
zero for the middle design. The relative efficiency of the X
design is only 24%, primarily because of the need to stack so
many observations in the center to equate the variances. The
relative efficiency of the + design is, of course, zero; it cannot
detect an interaction. Interestingly, the intermediate design has
a relative efficiency of only 6%, much less than half of the rela-
tive efficiency of the X design. Apparently, having even a few
observations in the most extreme categories is crucial for as-
sessing an interaction. Note that because all of the designs in
the third row have equal variances, and indeed equal marginal
distributions, they demonstrate that much more than the prod-
uct of the variances can be important in determining relative
efficiency for assessing moderator effects.

The first design in the last row of Figure 2 is as close to the
bivariate normal distribution as is possible with a 5 X 5 design.
Its relative efficiency is approximately 6%. The middle design in
the last row has the same marginal distributions but a negative
correlation between X and Z of approximately -.50. The last
design in that row also has the same marginal distributions but
a perfect negative correlation between X and Z. Note that in-
creasing the correlation between AT and Z increases the relative
efficiency for assessing a moderator effect. For example, for the
last design the perfect correlation between X and Z increases
C(X2, Z2)—to .10—more than it increases C2(X, Z)—to .06
—so the net effect is an increase in relative efficiency. The
middle design illustrates the increase in relative efficiency for a
moderate correlation. Of course, the last design in the last row
is useless for distinguishing the individual effects of X and Z
but, surprisingly, it has more power for detecting the interac-
tion.

In summary, the distributions in Figure 2 illustrate that
jointly extreme observations are crucial for detecting interac-
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tions. The joint distributions of X and Z can be highly unusual
and still provide adequate power for detecting the interaction as
long as there are jointly extreme observations. These illustra-
tions also demonstrate that a given design can have much dif-
ferent relative efficiencies for assessing interactions as opposed
to first-order linear effects.

A Case Study

It would be useful to calculate the relative efficiency for stud-
ies that have failed to show theorized interactions or that indi-
cated statistically significant interactions that reduced the resid-
ual error from the additive model by only 1% or 2%. However,
few such studies have published the entire bivariate distribu-
tion of X and Z and none, as far as we know, published
V(XZ.X, Z) or the important covariances C(X2, Z2), C(X,
Z2), and C(X2, Z) that are required to calculate it.

In lieu of a reconsideration of prior studies, we present as a
case study an examination of a data set from a field study con-
ducted by Richard lessor and his colleagues.15 We focus here on
only three of the many variables used in that study. The depen-
dent variable Y was an index of the number and severity of
adolescent problem behaviors; X was a 7-point index (0-6) of
risk factors that are presumed to predispose an adolescent to
problem behaviors; and Z was an 8-point index (0-7) of factors
that might protect an adolescent against the risks to which he or
she is exposed and thereby moderate the relationship between
risks X and problem behaviors y.

Observations from 1,646 adolescents produced the following
parameter estimates:

Y= controls + S.7X- 1.49Z- (4)

(overall R2 = .24, MSB = 600.54). The intercept and several
control variables (such as sex) were grouped into a single term
(controls) that was not relevant for the interaction issues dis-
cussed here. The test of the moderator effect (i.e., whether
—1.23 was reliably different from 0) yielded an Fratio of 17.92
(dfs = 1 and 1638), p < .0001. Although the interaction was
statistically reliable, it accounted for little additional variation
in Y; the PRE, or squared partial correlation, for the interaction
was only .01.

Rewriting the estimated model as

Y= controls - 1.49Z + (8.7 - 1.23Z)AT (5)

showed that the interaction was consistent with the theory. That
is, when there was no protection (Z= 0), the slope between risk
(X) and problem behavior involvement (Y) was positive (slope
= 8.7); however, for each unit that protection increased, the
slope between risks and problem behaviors decreased by 1.23,
until at Z = 7, representing the maximum level of protection,
the slope between risks X and problem behaviors Y reached a
minimum of 0.09. That is, a high level of protection essentially
eliminated the relationship between risks and problem behav-
iors. A disordinal interaction, which would imply that risk ex-
posure combined with a high level of protection could reduce
problem behaviors, seemed theoretically inappropriate in this
case. If a disordinal interaction is not appropriate, then given
the slope of 8.7 for unprotected adolescents (i.e., when Z = 0),
the greatest possible magnitude for the moderator coefficient

occurs when the moderated slope equals zero; that is, when 8.7
- &z(7) = 0, which implies &xz = -1.24. Thus, the estimated
coefficient of-1.23 is essentially as extreme as it can theoreti-
cally be. If the theoretically expected interaction is reliable and
is as large as it can possibly be, then why does it account for so
little variance? We answer this question by examining the joint
distribution of X and Z shown in Figure 3.

Clearly, the joint distribution in Figure 3 is skewed and
peaked so that relatively few combinations of X and Z account
for most of the observations. This distribution is obviously
much different from the optimal four-corner design. The
means for X and Z are 1.51 and 2.16, respectively, and the rele-
vant variances and covariances for calculating V( XZ.X, Z ) are
V(X)=\.956, V(Z) = 3.033, C(X2, Z2) = 0.1749, C(X, Z) =
— 1.0088 (which implies a correlation between X and Z of
-0.414),C(^,Z2) = -0.6618,andC(^2,Z)=-0.7414. Using
these variances and covariances in Equation 2 to calculate the
residual variance of the product yields

V(XZ.X, Z) = V ( X ) V ( Z ) + C(X2, Z2) - C2(X, Z)

C2(X2, Z ) V ( Z ) + C2(X, Z 2 ) V ( X )
- 2C(X, Z)C(X2, Z)C(X, Z2)
V(X)V(Z)-C2(X,Z)

= 5.9325 + 0.1749 - 1.0177 - 0.7149

= 4.37. (6)
The maximum possible value of V( XZ.X, Z) for a design with
the same ranges for Xand Z would equal the product of the two
variances with one fourth of the observations at each extreme
combination. In this case, the variances are 32 = 9 and (3.5)2 =
12.25, respectively, and their product equals 110.25. Thus, the
relative efficiency is only 4.37/110.25 = 4.0% of the maximum
possible for an optimal design. In other words, an optimal de-
sign with only 65 observations has the same efficiency as the
present joint distribution of X and Z with 1,646 observations.
Note that these values are highly similar to those in the simu-
lated studies described earlier and that they do not depend on
the magnitude of the moderator effect.

The calculations in Equation 6 also show the primary reason
that the residual variance of the product is so small in this case:
The two variances are only about one fifth and one fourth,
respectively, of the maximum possible values for their ranges.
Compared with the maximum possible residual variance, the
other adjustments (upward by 0.17 for slight X-ness, downward
by — 1.01 for covariance between X and Z, and downward by
-0.7149 for various asymmetries) are not large. Thus, this ex-
ample is consistent with our conjecture that the most important
components in determining V(XZ.X, Z) are the individual
variances and that the effects of the adjustments for the various
covariances are relatively small compared with the effect of
moving observations from the corners to the center of the joint
distribution. Even so, however, the effects of the covariance and

15 The illustrative analysis presented here should not be considered a
definitive representation of these data. We consider only 1 year of a
longitudinal data set and only one way of operationalizing the con-
structs. The research described here was conducted as part of a larger
project supported by the William T. Grant Foundation (Grant 88-
1194-88 to Richard Jessor, principal investigator).
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Frequenc

Figure 3. Joint distribution of X (risks) and Z
(protective factors) for the case study.

the bivariate skewness components are not trivial. In the pres-
ent case, if we suppose that the correlation between X and Z
and the asymmetry covariances were zero, then the residual
variance of the product would be 6.11, almost 40% larger. In
other words, a joint distribution with the same central peak but
with all those covariance components equal to zero would need
only about 1,177 observations to produce the same statistical
efficiency for estimating the moderator coefficient as this study
with 1,646 observations.

Clearly, the distribution in Figure 3 produces significantly
less statistical power than does an optimal distribution. How-
ever, the large sample size in this example provides adequate
power: A reliable moderator effect is obtained. The question
remains as to why the moderator term accounts for so little of
the residual variance after removing the effects of Xand Z. An
expression for PRE from Judd and McClelland (1989) is as
follows:

PRE =
1

1 +
MSB

(7)

bxz
2V(XZ.X,Z)

Note that Equation 7 implies that for a constant moderator
coefficient bxz, the effect size will vary as a function of the
distribution of the predictor variables. If we assume, consistent
with the standard assumptions of least squares regression, that
MSE and bxz are the same for an optimal design, then the PRE
for an optimal design would equal a respectable

PRE
1

1 +
600.54

• = .217. (8)

-1.232(110.15)

This suggests that it is the nonoptimal distribution of X and Z
and not the magnitude of the moderator coefficient that causes

the additional variance reduction to be so small. Of course, the
joint distribution of X and Z is in fact the one observed in the
field study, so that one expects the interaction to produce only a
1 % reduction in error in the field. However, it is not appropriate
to dismiss a 1% interaction found in the field because, as this
example shows, it is equivalent to an interaction reducing error
21.7% in an optimal design. Obviously, there are serious
dangers in comparing variance explained by interactions across
studies that differ substantially in the optimality of their de-
signs.

Generalizations and Special Cases

Our focus has been on the difficulty of detecting a single
moderator effect or two-way interaction. It is now useful to
apply our results for the residual variance of the product both to
several special, often simpler, cases such as linear effects and
quadratic effects and to more complicated cases such as multi-
ple two-way and higher order interactions.

Linear Effects

Field researchers using designs with less statistical power
than the maximum possible may believe that because they can
detect linear or first-order effects, that they also have adequate
power for detecting higher order effects. However, the power
issues are much different for the special case of linear effects.
Consider the simulation example in which the individual vari-
ances for the field studies are approximately one fourth of those
for the experiments. To have comparable statistical efficiency
for estimating linear effects, the field studies need four times as
many observations (400 vs. 100 in the simulation) as the experi-
ments. For detecting linear effects of Xand Z in a simple addi-
tive model in a field study, one fourth of the variance might be
sufficient or might reasonably be compensated by four times as
many observations.

The situation is much different for detecting an interaction or
moderator effect. Even assuming no complications from the
higher order covariances, the residual variance of the product
for the field study is only about ('AX'A) = '/>« of that of the
experiment. Thus, 16 times as many observations (1,600 vs.
100) are needed in the field study for comparable efficiency.
Thus, even though nonoptimal designs or particular sample
sizes may be adequate for detecting linear effects, they may
simultaneously be grossly inadequate, relative to optimal de-
signs, for detecting moderator effects of comparable magni-
tude.

Quadratic Effects

The detection of quadratic effects is a special case of detect-
ing moderator effects. Including X2 in a regression model,
equivalent to letting Z = X in Equation 1, asks whether X itself
moderates the relationship between X and Y. There are three
important reasons for considering the special case of the qua-
dratic effect. First, researchers with good theoretical reasons
for expecting to find quadratic effects have similarly lamented
the difficulty in finding these effects. Our results regarding
moderator effects also illuminate this difficulty. Second, to con-
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sider the special case of quadratic effects we need only consider
the implications of the univariate distribution X for the resid-
ual variance of X2. The univariate distribution is inherently
simpler than the bivariate distributions we considered earlier;
this makes it easier to develop intuitions and insights about the
practical implications of our mathematical results. Third, Lu-
binski and Humphreys (1990) demonstrated that it is impor-
tant to control for the quadratic effects of Tand Z before testing
for an interaction between them; otherwise, spurious modera-
tor effects may result. Judd and McClelland (1989, p. 274) simi-
larly demonstrated that controlling first for quadratic effects
can eliminate interactions that are statistically significant if
only the linear effects of X and Z are controlled. However,
researchers following the advice of Lubinski and Humphreys
need to be aware of the way in which the univariate distribu-
tions of X and Z might compromise the statistical power of
their quadratic tests.

Using the customary definitions of skewness and excess kur-
tosis,16 we show in the Appendix that the residual variance of
X2, controlling for X, is given by the following:

V(X2.X) = 2 - . (9)

The effects of the univariate distribution of X on the residual
variance of X2, and hence the effects on statistical power, with
all else being equal, are clear. V( X2.X) increases with increas-
ing V2(X), which is the variability of X itself, with increasing
kurtosis, and with decreasing absolute values of skewness.

The maximum possible residual variance for the quadratic
effect results when one fourth of the observations are at either
extreme of X and the remaining half of the observations are
exactly halfway between those two extremes.17 For example, for
five possible levels of X, the optimal distribution is ('/4, 0, '/2, 0,
'/4). That is, the relative efficiency of this distribution for assess-
ing the quadratic coefficient is 1 .0. This design is not often used
by experimentalists to test for quadratic effects. Instead, equal
numbers of observations are used at three levels of X giving the
distribution ('/3, 0, '/3, 0, '/'), which has a relative efficiency of
8/9 = 88.9%. In other words, the usual experimental design
needs 9/8 = 1.125 times as many observations as the optimal
design to have the same efficiency.

In most field studies, there are more than three levels of X. If
observations are distributed across more categories, then rela-
tive efficiency decreases. For example, the relative efficiency of
the distribution ('/s, lfa l/s, l/s, '/>) is only 70%, needing 1 .43 times
as many observations as the optimal design for comparable effi-
ciency. In the extreme, an infinite number of categories is equiv-
alent to a continuous uniform distribution that has a relative
efficiency of only 36%, requiring 2.78 times the n for the opti-
mal design. Clearly, spreading observations over many catego-
ries has a serious deleterious effect on the ability to detect qua-
dratic effects.

Uniform distributions are, of course, uncommon in field
studies. A more typical distribution might be ('/is, 3/is, 1l\s, 3/is,
'/is), which has a relative efficiency of only 21.8% and requires
approximately 4.6 times as many observations to have the same
efficiency as an optimal design. These particular numerical
examples are not as important as the realization that having
many categories or having peaked distributions substantially

reduces relative efficiency for assessing the quadratic effects.
Note also that Equation 9 implies that any asymmetry in the
distribution of ̂ reduces further the variance of the quadratic
term and hence reduces statistical power.

Multiple Two-Way Interactions

In many studies, researchers evaluate two or more modera-
tors in a single analysis. For example, a regression model might
include terms for XZ, WX, and WZ. Researchers sometimes
make inferences about relative importance when, say, one of the
three interaction terms is statistically significant and the others
are not. However, such inferences require equivalent statistical
power for each test. It might well be the case that the interaction
terms are equivalent in terms of the sizes of their partial regres-
sion coefficients but that there are differences in statistical reli-
ability due entirely to differences in the residual variances of
the interaction terms. Thus, when examining multiple two-way
interactions, one ought to compare the residual variances of
those interactions before making any inferences about their
relative importances.

Higher Order Interactions

Our results for two-way interactions are easily generalized to
higher order interactions. For example, consider the simulated
field studies again and suppose that there is a third variable W
with a distribution similar to those of X and Z. In the simula-
tions, the variances of X and Z and, now, Ware each a little less
than one fourth of the variances in the optimal experimental
design. The residual variances of the two-way interactions are
then less than ('A)2 = Vie of the residual variances of the optimal
design for detecting two-way interactions. For the three-way
interaction WXZ, the residual variance is less than ('/4)3 = l/u
of the residual variance in the optimal design. In other words,
for the field studies to have efficiency for assessing the coeffi-
cient for the three-way interaction comparable to an optimally
designed experiment with 100 observations requires 100(64) =
6,400 observations. Thus, field studies are at an even greater
disadvantage, relative to experiments, in terms of their ability
to detect higher order interactions. The problem is that the
interaction is best identified by observations jointly extreme on
W, X, and Z, but such observations are extremely rare, more
rare than observations that are jointly extreme on any two of
the three predictor variables. Similar arguments apply to three-
way interactions such as X3, X2Z, and XZ2.

16 Kurtosis is denned here as the excess kurtosis relative to the nor-
mal distribution; hence, as used here, the kurtosis of the normal distri-
bution is zero.

17 Note that this is the optimal design for detecting a quadratic effect
and that it is not necessarily the best distribution of observations for
detecting other effects. For example, it is not the best design for detect-
ing a linear effect and it, of course, has no possibility of detecting a
cubic effect with just three distinct values of X. Studden (1982) consid-
ered designs optimal for detecting a quadratic effect while still allow-
ing the possibility of detecting higher order effects. However, our focus
here is on only the quadratic effect.
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Discussion

Summary

We have a clear answer to the question of why field studies
have more difficulty detecting moderator effects or interactions
than do experiments; field studies, relative to experiments,
have nonoptimal distributions of Xand Z, and this means the
residual variance of the product, V(XZ.X, Z), is relatively
lower, which in turn means that the efficiency of the moderator
parameter estimate and statistical power is much lower. Simula-
tions, illustrative examples, and a case study demonstrate that
the difference in efficiency between field studies and optimally
designed experiments is dramatic. Moreover, even when non-
optimal designs successfully detect an interaction, the reduc-
tion in variation attributable to adding the interaction term to
an additive model is likely to be small because of the important
role of V(XZ.X, Z) in the calculation of effect size. These
disadvantages of field studies relative to experiments are in
addition to problems such as measurement error that have pre-
viously been identified. Furthermore, the relative disadvantage
of field studies becomes worse when considering higher order
interactions.

When will the residual variance of a product be large and
when will it be small? Equation 2 for V(XZ.X, Z) and the
examples from Figure 2 suggest that the most important deter-
minants of the residual variance of the product are the vari-
ances of X and Z. Whatever reduces the individual variances
will have an even greater impact on the reduction of the prod-
uct variance because of the multiplication. Thus, problems
caused by reductions in the ranges or variances of the predictor
variables are compounded when testing for interactions.

Factors that can reduce the variance of an individual predic-
tor include restrictions on its range, the clustering of observa-
tions in the center of its range rather than at the extremes, and
the distribution of observations over many categories within its
range. Field researchers have little control over such factors and
so must contend with whatever range occurs, a unimodal and
often skewed distribution with few observations at the ex-
tremes, and, if good measures are used, multiple categories
between the extremes. The experimentalist, on the other hand,
can often use extreme ranges, can concentrate observations at
the extremes, and can avoid having observations in middle cate-
gories. All of these factors increase the variability of .Yand Z
and therefore increase the variability of XZ. It is important to
note that our comparisons between optimal and nonoptimal
designs presume a common range. These comparisons show
the overwhelming superiority of optimal designs in detecting
interactions. However, the ability of experimentalists to use
even more extreme ranges and optimal designs further en-
hances their ability to detect interactions. In other words, a
bleak assessment of the relative ability of field studies to detect
interactions is really a best-case scenario; estimating the rela-
tive efficiency using Equation 2 actually understates the true
relative superiority of experiments in detecting interactions.

It is a mistake to presume that only the individual variances
are important in determining the residual variance of the prod-
uct. Although the individual variances probably have the great-
est effect in reducing the residual variance to a small fraction of

its maximum possible value, the adjustments for covariance
and bivariate asymmetric patterns can reduce small residual
variances even further. This was demonstrated in the case study
considered earlier. When statistical power is already low, fur-
ther reductions caused by covariance and asymmetry are costly.
Covariances and asymmetries that reduce the likelihood that
extreme values jointly occur on X and Z necessarily reduce
relative efficiency for detecting moderator effects.

Implications for Field Research Design

What are the lessons for field researchers? Unfortunately, it is
easier to list unwarranted inferences that someone might be
tempted to draw from these results than it is to provide helpful
advice. For example, an uncritical consideration of the effects
of multiple categories and clustering of observations away from
the extremes might suggest that field researchers should either
use measures of X and Z with fewer categories or use proce-
dures such as median splits to recede observations into fewer
categories. However, doing so is a serious mistake. Using impre-
cise measures does not mean that observations are really in few
categories and simply receding observations into extreme cate-
gories does not make those observations truly extreme. Using
imprecise measures (i.e., those with few categories) implies that
X and Z are measured with more error; Busemeyer and Jones
(1983) demonstrated the serious deleterious effects of in-
creased measurement error on the detection and interpretation
of interactions. Maxwell and Delaney (1993) showed that in
some circumstances median splits reduce statistical power and
in other circumstances produce spurious interaction effects.
The experimentalist's advantage is not due only to having fewer
categories but also to being able to ensure that observations in
those categories are truly extreme.

Another example of an unwise strategy is collecting data
from a random sample and then applying moderated multiple
regression on only a subsample that is as close to an optimal
design as possible. Analyzing data only from this subsample
actually decreases statistical power for detecting the interac-
tion. To see why this is so, suppose we have an optimal subsam-
ple. What are the costs and benefits of including another obser-
vation from the larger sample in the analysis? The least useful
observation that we can add, the one that decreases the residual
variance V( XZ.X, Z) the most, is an observation exactly equal
to the mean of the residual product. This observation reduces
the residual variance to (n - 1)/« of what it is for the optimal
design. However, to calculate the variance of the error of the
coefficient estimate, the crucial term for statistical power, the
residual variance is multiplied by the sample size, which in this
case is «/(« — 1) larger than it is for the optimal design. Hence,
in the worst case, the reduction in the residual variance of the
product is exactly balanced by the increase in the sample size.
For any additional observation that is not exactly equal to the
mean of the residual product, the effect of the increase in sam-
ple size is greater than the effect of the decrease in the residual
variance for a net gain in efficiency and statistical power. There-
fore, adding observations to an optimal design never does harm
and instead will almost always be beneficial. Thus, field re-
searchers should always use their full samples in moderated
multiple regression.
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Knowing that adding observations to an optimal design can
do no harm suggests that the fundamental problem in field
studies is that a subsample satisfying an optimal design simply
does not exist. If a large field study does contain a subsample of,
say, 60 observations satisfying an optimal design, then that field
study has at least as much statistical power, all else being equal,
as an optimally designed experiment with 60 observations. For
example, note that in Figure 3 an optimal subsample is not even
possible—there are simply no observations with maximum val-
ues on both X and Z. Moderated regression models used in
field studies may make their most interesting predictions about
observations that are rare or that may not exist at all.

What, then, can field researchers do to improve their
chances of detecting interactions or quadratic effects? Obvious
methods for increasing statistical power are to accept higher
rates of Type I errors (a strategy not usually acceptable to jour-
nal editors) or to increase the number of observations. How-
ever, our results suggest that increasing observations may be
impractical because typical field study joint distributions of X
and Z are so inefficient that enormous samples are required to
have the statistical power of optimally designed experiments
for detecting interactions.

One interesting alternative strategy, suggested by considering
the residual variance of the product, is not to sample randomly
but instead to oversample extreme observations so as to ensure
that at least a subsample is close to an optimal design. This
strategy is controversial. On the one hand, parameter estimates
in the moderated regression model will still be unbiased, even
with the oversampling, and those estimates will be more effi-
cient in terms of having smaller standard errors and hence
narrower confidence intervals. On the other hand, the overall
R2 for the total model and the PRE for the product term will
both be higher, perhaps considerably higher, than they are with
a random sample. In other words, if one's goal is to estimate the
total variation explained by the moderated regression model,
then oversampling extreme observations produces a seriously
inflated estimate of R2. However, this seems no greater sin than
that committed by experimentalists using optimal but unrepre-
sentative designs.

The bias in estimating PRE for the product term itself is less
problematic because the interpretation of the PRE is ambigu-
ous for the case of interactions. Although it is appropriate to
view the moderator PRE in the hierarchical test as the propor-
tion of the residual variation in Y attributable to the product
after the effects of the "additive" components are removed, it is
not appropriate to interpret the moderator PRE as the propor-
tion of the variation uniquely attributable to the multiplicative
part of the model.18 To know the true multiplicative proportion
requires knowing the true origins of the scales; in other words,
X and Z must be ratio rather than interval scales. If one were
allowed to change the origins of X and Z, as is the case in
moderated multiple regression, then a change of origin always
exists that makes fix= (3Z = 0; this assigns all of R2, the variation
explained by the entire model, to the multiplicative compo-
nent, leaving none for the additive components. Birnbaum
(1973) and Anderson and Shanteau (1977) demonstrated that
even when the true model is entirely multiplicative (i.e., f}x= 0Z
= 0), an additive model can "account" for a high proportion of
the total variance. Thus, a biased estimate of PRE does not

seem to be a serious problem. The more important question is
whether any multiplicative effect exists; that is, it is more im-
portant to know that PRE does not equal zero than to know
exactly what it equals.

Oversampling extreme observations is controversial. How-
ever, if it is theoretically important to demonstrate a moderator
effect, then oversampling observations extreme on both A" and
Z may be the best approach. Field researchers might use strati-
fied sampling to obtain the extreme observations in much the
same way stratified sampling is used to ensure adequate sub-
group sample sizes. The unweighted sample could then be used
to test the moderator effect and a weighted sample (on the basis
of the stratification scheme) could be used to estimate the popu-
lation effect sizes. At the least, field researchers should be
aware of the consequences of the nonoptimality of their designs
and perhaps should publish V( XZ.X, Z) and the relative effi-
ciency of their designs so that readers can better assess the
likelihood that an interaction could be detected. Also, field
researchers may want to report the comparison of the obtained
moderator coefficient to the theoretical maximum value as we
did in the case study earlier.

Implications for Experimentalists

What are the implications for our results on residual vari-
ances of products for experimentalists? First, experimentalists
need to be aware that they often will have enormous statistical
power for detecting interactions compared with their col-
leagues who conduct field research. They need to be aware that
the failure of those colleagues to find corresponding interac-
tions may not be due to sloppier procedures but to the field
studies' much lower relative statistical power for detecting in-
teractions and moderator effects.

In addition, there is at least one context—the analysis of co-
variance—in which even the experimentalist is plagued by the
relative lack of power in testing interactions that results from
less than optimal designs. The distribution of scores on the
covariate is likely to be unimodal with few extreme cases so that
the residual variance for the product of the covariate and any
categorical predictor is likely to be relatively small compared
with the maximum possible. Hence, with the sample sizes used
in most experiments, it is difficult to detect interactions be-
tween the covariate and a categorical predictor. Tests of the
important assumption of homogeneity of regression in the anal-
ysis of covariance are based on tests of interactions between
covariates and categorical predictor variables; our results sug-
gest that such tests are likely to have relatively low statistical
power. However, in the same study there might be enormous
statistical power for detecting an interaction between two di-
chotomous categorical predictors.

Conclusion

Our analysis of the relative superiority of experimental de-
signs for detecting interactions implies that unless researchers
can select, oversample, or control the levels of the predictor

18 Jerry Busemeyer drew our attention to this subtle but important
issue concerning multiplicative models.
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variables, detection of statistically reliable interactions or qua-
dratic effects explaining an appreciable proportion of the varia-
tion of the dependent variable will be difficult. This does not
mean that researchers should not seek interactions in such con-
ditions; however, they should be aware that the odds are against
them.
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In this appendix we derive an explicit formula for V( XZ.X,
Z), the residual variance of the product, expressed entirely in
terms of the joint central moments of the bivariate distribution
of X and Z. Let RXZJCJ? represent the proportion of the varia-
tion in XZ that can be predicted by a linear combination of X
and Z. Then, the residual variation in XZ not related to either
X or Z is given by
ft V(XZ.X, Z) = V(XZ)(\ - Rxz.x,z2)-

It is easy to show (e.g., see Cohen & Cohen, 1983) that

R XZ.X.Z

Appendix

- C(X, Z ) E ( Z ) V ( X ) } + C(X, Z ) E ( Z ) V ( X )

+ E(xz2)V(X) + E ( X ) V ( X ) V ( Z ) ] } / [ V ( X ) V ( Z )

-C2(X, Z)]. (16)

This reduces to the following:

V(XZ.X, Z) = [C\X, Z) + 2C(X, Z)E(x2z)E(xz2)

- C2(X, Z)E(x2z2) - E2(xz2)V(X) - E(x2z2)V(Z)

- C2(X, Z ) V ( X ) V ( Z ) + E ( x 2 z 2 ) V ( X ) V ( Z ) ] /

[V(X)V(Z)-C2(X,Z)]. (17)

(10)

(11)V(XZ) V(XZ)

Substituting Equation 1 1 into Equation 10 yields the following:

V( XZ.X, Z)=V(XZ)- Px.zC(X, XZ)

-PZ.XC(Z,XZ). (12)

Note that if neither X nor Z is related to XZ (i.e., the two
covariances equal zero), then there is no adjustment; in that
case, the residual variance of the product equals the simple
variance of the product.

We now use expressions19 for the variance and covariance of
product terms from Aiken and West (1 99 1 ). In particular, their
Equation A. 7 (p. 179) was as follows:

V(XZ)= V(Z)E2(X) + ¥(X)E2(Z) + E(x2z2)

+ 2E(X)E(xz2) + 2E(Z)E(x2z)

+ 2C(X,Z)E(X)E(Z)-C2(X,Z). (13)

Their Equation A. 14 (p. 180) was as follows:

C(X,XZ) = E(x2z)+ V ( X ) E ( Z ) + C(X,Z)E(X), (14)

where x= X - E(X) and z = Z - E(Z) are centered values.
Changing the roles of X and Z, we obtain the corresponding
equation:

C(Z, XZ) = E(xz2)+ V ( Z ) E ( X ) + C(X,Z)E(Z). (15)

Note that Equations 13-15 simplify considerably if X and Z
have been centered so that E(X) = E(Z) = 0. However, we
continue the proof with no assumptions about the expected
values of X and Z. Substituting these expressions for the vari-
ances and covariances in Equation 1 2 yields the following:

V(XZ.X, Z) = 2C(X, Z)E(X)E(Z) - C2(X, Z)

+ 2E(Z)E(x2z) + 2E(X)E(xz2) + E(x2z2)

4- E 2 ( Z ) V ( X ) + E 2 ( X ) V ( Z ) - {[C(X, Z ) E ( X )

+ E(x2z) + E ( Z ) V ( X ) ] [ C ( X , Z ) E ( X ) V ( Z )

+ E(x1z)V(Z) + E(Z)V(X)V(Z) - C2(X, Z)E(Z)

- C(X, Z)E(xz2) - C(X, Z ) E ( X ) V ( Z ) ] } I [ V ( X ) V ( Z )

- C2(X, Z)] - {[C(X, Z)E(Z) + E(xz2)
+ E ( X ) V ( Z ) ] [ - C 2 ( X , Z ) E ( X ) - C(X, Z)E(x2z)

Note that although E(X) and E(Z) appear in the full expres-
sion for the residual product in Equation 16, they cancel and do
not appear in Equation 17; this proves that V( XZ.X, Z), and
hence the statistical test of the moderator effect, is independent
of changes in the origin of either the X or the Z scales. Noting
that

[E(x2z2) - C2(X, Z ) } { V ( X ) V ( Z ) - C2(X, Z)]

= C\X, Z) - C2(X, Z)E(x2z2) - C2(X, Z ) V ( X ) V ( Z )

+ E(x2z2)V(X)V(Z), (18)

the expression for the residual variance further simplifies to

V(XZ.X, Z) = E(x2z2) - C2(X, Z)

E2(xz2)V(X) + E2(x2z)V(Z)
- 2C(X, Z)E(x2z)E(xz2)

V(X)V(Z)-C2(X, Z )
(19)

To express Equation 19 in terms of variances and covariances of
centered predictors, we use the following equivalences, which
assume that E(X) =E(Z) = 0:

C(X2, Z2) = E(x2z2) - V ( X ) V ( Z )

C(X2,Z) = E(x2z)

C(X,Z2) = E(xz2).

(20)

(21)

(22)

These equivalences are easily deduced from the general for-
mula for product covariances given by Bohrnstedt and Gold-
berger (1969) or from the methods used by Aiken and West
(1991) in their Appendix. Making appropriate substitutions for
the joint central moments in Equation 19 yields the following:

V(XZ.X, Z) = V ( X ) V ( Z ) + C(X2, Z2) - C2(X, Z)

C2(X2, Z)V(Z) + C2(X, Z2)V(X)
~ 2C(X, Z)C(X2, Z)C(X, Z2)
V(X)V(Z)-C2(X,Z) ' ( }

which is the expression given in the text (Equation 2).

" Alternatively, these expressions can be derived easily from the gen-
eral formula for covariances of arbitrary products provided by Bohrn-
stedt and Goldberger (1969).

(Appendix continues on next page)
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The derivation of V( X2.X) for the special case of the qua-
dratic effect follows directly. Replacing Z with Xand z with x in
Equation 19 yields

V(X2.X) = E(x4) - C2(X, X)

- 2C(X, X)E2(x3)
V 2 ( X ) - C2(X,X)

(24)

Factoring the numerator and denominator of the last term of
Equation 24 and canceling yields

V(X2.X) = E(x*) - C2(X, X) -
2£2(;c3)

C(X,X)

Remembering that C(X, X) = V ( X ) , this becomes

£2(jc3)
V ( X 2 . X ) = - V2(X)~

V(X) '

(25)

(26)

Making the substitutions to common names of E(x4) =
K2(^)[kurtosis(^) + 3] and E(x3) = V3/2(X)skew(X) yields
the final expression:20

V(X2.X) = K2(^T)[kurtosis(X) + 2 - skew2(JT)], (27)

which is the expression given in the text (Equation 9).

20 Rohatgi and Szekely (1989) showed that skew2(JT) < kurtosis (X)
+ 2 for all distributions, so values of V( X2.X) are guaranteed to be
nonnegative. Our derivation could be construed as an alternative proof
of the Rohatgi and Szekely inequality. Kurtosis is denned here to be the
excess relative to the normal distribution.
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